Skip to content

Commit 299738e

Browse files
committed
Prepere for IMZ v2.0.0 release
2 parents 2712566 + 6e63fa3 commit 299738e

File tree

480 files changed

+39749
-277
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

480 files changed

+39749
-277
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -10,3 +10,4 @@
1010
test_data/
1111
download_glue_data.py
1212
data/
13+
output/

README.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,8 @@
22

33
This repository contains **links to pre-trained models, sample scripts, best practices, and step-by-step tutorials** for many popular open-source machine learning models optimized by Intel to run on Intel® Xeon® Scalable processors.
44

5+
Model packages and containers for running the Model Zoo's workloads can be found at the [Intel® oneContainer Portal](https://software.intel.com/containers).
6+
57
## Purpose of the Model Zoo
68

79
- Demonstrate the AI workloads and deep learning models Intel has optimized and validated to run on Intel hardware

SECURITY.md

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
# Security Policy
2+
3+
## Report a Vulnerability
4+
5+
Please report security issues or vulnerabilities to the [Intel® Security Center].
6+
7+
For more information on how Intel® works to resolve security issues, see
8+
[Vulnerability Handling Guidelines].
9+
10+
[Intel® Security Center]:https://www.intel.com/security
11+
12+
[Vulnerability Handling Guidelines]:https://www.intel.com/content/www/us/en/security-center/vulnerability-handling-guidelines.html

benchmarks/README.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,20 +23,25 @@ dependencies to be installed:
2323
| Image Recognition | TensorFlow | [ResNet 50](https://arxiv.org/pdf/1512.03385.pdf) | Inference | [Int8](image_recognition/tensorflow/resnet50/README.md#int8-inference-instructions) [FP32](image_recognition/tensorflow/resnet50/README.md#fp32-inference-instructions)|
2424
| Image Recognition | TensorFlow | [ResNet 50v1.5](https://github.com/tensorflow/models/tree/master/official/resnet) | Inference | [Int8](image_recognition/tensorflow/resnet50v1_5/README.md#int8-inference-instructions) [FP32](image_recognition/tensorflow/resnet50v1_5/README.md#fp32-inference-instructions) [BFloat16**](image_recognition/tensorflow/resnet50v1_5/README.md#bfloat16-inference-instructions)|
2525
| Image Recognition | TensorFlow | [ResNet 50v1.5](https://github.com/tensorflow/models/tree/master/official/resnet) | Training | [FP32](image_recognition/tensorflow/resnet50v1_5/README.md#fp32-training-instructions) [BFloat16**](image_recognition/tensorflow/resnet50v1_5/README.md#bfloat16-training-instructions)|
26+
| Image Segmentation | TensorFlow | [UNet](https://arxiv.org/pdf/1505.04597.pdf) | Inference | [FP32](image_segmentation/tensorflow/unet/README.md#fp32-inference-instructions) |
27+
| Image Segmentation | TensorFlow | [MaskRCNN](https://arxiv.org/abs/1703.06870) | Inference | [FP32](image_segmentation/tensorflow/maskrcnn/README.md#fp32-training-instructions) |
2628
| Language Modeling | TensorFlow | [BERT](https://arxiv.org/pdf/1810.04805.pdf) | Inference | [FP32](language_modeling/tensorflow/bert_large/README.md#fp32-inference-instructions) [BFloat16**](language_modeling/tensorflow/bert_large/README.md#bfloat16-inference-instructions) |
2729
| Language Modeling | TensorFlow | [BERT](https://arxiv.org/pdf/1810.04805.pdf) | Training | [FP32](language_modeling/tensorflow/bert_large/README.md#fp32-training-instructions) [BFloat16**](language_modeling/tensorflow/bert_large/README.md#bfloat16-training-instructions) |
2830
| Language Translation | TensorFlow | [BERT](https://arxiv.org/pdf/1810.04805.pdf) | Inference | [FP32](language_translation/tensorflow/bert/README.md#fp32-inference-instructions) |
2931
| Language Translation | TensorFlow | [GNMT*](https://arxiv.org/pdf/1609.08144.pdf) | Inference | [FP32](language_translation/tensorflow/mlperf_gnmt/README.md#fp32-inference-instructions) |
3032
| Language Translation | TensorFlow | [Transformer_LT_Official ](https://arxiv.org/pdf/1706.03762.pdf)| Inference | [FP32](language_translation/tensorflow/transformer_lt_official/README.md#fp32-inference-instructions) |
3133
| Language Translation | TensorFlow | [Transformer_LT_mlperf ](https://arxiv.org/pdf/1706.03762.pdf)| Training | [FP32](language_translation/tensorflow/transformer_mlperf/README.md#fp32-training-instructions) [BFloat16**](language_translation/tensorflow/transformer_mlperf/README.md#bfloat16-training-instructions) |
34+
| Object Detection | TensorFlow | [Faster R-CNN](https://arxiv.org/pdf/1506.01497.pdf) | Inference | [Int8](object_detection/tensorflow/faster_rcnn/README.md#int8-inference-instructions) [FP32](object_detection/tensorflow/faster_rcnn/README.md#fp32-inference-instructions) |
3235
| Object Detection | TensorFlow | [R-FCN](https://arxiv.org/pdf/1605.06409.pdf) | Inference | [Int8](object_detection/tensorflow/rfcn/README.md#int8-inference-instructions) [FP32](object_detection/tensorflow/rfcn/README.md#fp32-inference-instructions) |
3336
| Object Detection | TensorFlow | [SSD-MobileNet*](https://arxiv.org/pdf/1704.04861.pdf) | Inference | [Int8](object_detection/tensorflow/ssd-mobilenet/README.md#int8-inference-instructions) [FP32](object_detection/tensorflow/ssd-mobilenet/README.md#fp32-inference-instructions) |
3437
| Object Detection | TensorFlow | [SSD-ResNet34*](https://arxiv.org/pdf/1512.02325.pdf) | Inference | [Int8](object_detection/tensorflow/ssd-resnet34/README.md#int8-inference-instructions) [FP32](object_detection/tensorflow/ssd-resnet34/README.md#fp32-inference-instructions) |
3538
| Object Detection | TensorFlow | [SSD-ResNet34](https://arxiv.org/pdf/1512.02325.pdf) | Training | [FP32](object_detection/tensorflow/ssd-resnet34/README.md#fp32-training-instructions) [BFloat16**](object_detection/tensorflow/ssd-resnet34/README.md#bf16-training-instructions) |
39+
| Recommendation | TensorFlow | [NCF](https://arxiv.org/pdf/1708.05031.pdf) | Inference | [FP32](recommendation/tensorflow/ncf/README.md#fp32-inference-instructions) |
3640
| Recommendation | TensorFlow | [Wide & Deep Large Dataset](https://arxiv.org/pdf/1606.07792.pdf) | Inference | [Int8](recommendation/tensorflow/wide_deep_large_ds/README.md#int8-inference-instructions) [FP32](recommendation/tensorflow/wide_deep_large_ds/README.md#fp32-inference-instructions) |
3741
| Recommendation | TensorFlow | [Wide & Deep Large Dataset](https://arxiv.org/pdf/1606.07792.pdf) | Training | [FP32](recommendation/tensorflow/wide_deep_large_ds/README.md#fp32-training-instructions) |
3842
| Recommendation | TensorFlow | [Wide & Deep](https://arxiv.org/pdf/1606.07792.pdf) | Inference | [FP32](recommendation/tensorflow/wide_deep/README.md#fp32-inference-instructions) |
3943
| Reinforcement | TensorFlow | [MiniGo](https://arxiv.org/abs/1712.01815.pdf) | Training | [FP32](reinforcement/tensorflow/minigo/README.md#fp32-training-instructions)|
44+
| Text-to-Speech | TensorFlow | [WaveNet](https://arxiv.org/pdf/1609.03499.pdf) | Inference | [FP32](text_to_speech/tensorflow/wavenet/README.md#fp32-inference-instructions) |
4045

4146
## TensorFlow Serving Use Cases
4247

benchmarks/common/tensorflow/start.sh

Lines changed: 82 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -90,8 +90,8 @@ if [[ ${NOINSTALL} != "True" ]]; then
9090
export HOROVOD_WITHOUT_PYTORCH=1
9191
export HOROVOD_WITHOUT_MXNET=1
9292
export HOROVOD_WITH_TENSORFLOW=1
93-
# lock horovod==0.19.1 release commit/version
94-
pip install --no-cache-dir horovod==0.19.1
93+
# lock horovod==0.20.0 release commit/version
94+
pip install --no-cache-dir horovod==0.20.0
9595
fi
9696
fi
9797

@@ -500,6 +500,51 @@ function densenet169() {
500500
fi
501501
}
502502

503+
# Faster R-CNN (ResNet50) model
504+
function faster_rcnn() {
505+
export PYTHONPATH=$PYTHONPATH:${MOUNT_EXTERNAL_MODELS_SOURCE}/research:${MOUNT_EXTERNAL_MODELS_SOURCE}/research/slim
506+
original_dir=$(pwd)
507+
508+
if [ ${NOINSTALL} != "True" ]; then
509+
# install dependencies
510+
pip install -r "${MOUNT_BENCHMARK}/object_detection/tensorflow/faster_rcnn/requirements.txt"
511+
cd "${MOUNT_EXTERNAL_MODELS_SOURCE}/research"
512+
# install protoc v3.3.0, if necessary, then compile protoc files
513+
install_protoc "https://github.com/google/protobuf/releases/download/v3.3.0/protoc-3.3.0-linux-x86_64.zip"
514+
515+
# Install git so that we can apply the patch
516+
apt-get update && apt-get install -y git
517+
fi
518+
519+
# Apply the patch to the tensorflow/models repo with fixes for the accuracy
520+
# script and for running with python 3
521+
cd ${MOUNT_EXTERNAL_MODELS_SOURCE}
522+
git apply ${MOUNT_INTELAI_MODELS_SOURCE}/${MODE}/${PRECISION}/faster_rcnn.patch
523+
524+
if [ ${PRECISION} == "fp32" ]; then
525+
if [ -n "${config_file}" ]; then
526+
CMD="${CMD} --config_file=${config_file}"
527+
fi
528+
529+
if [[ -z "${config_file}" ]] && [ ${BENCHMARK_ONLY} == "True" ]; then
530+
echo "Fast R-CNN requires -- config_file arg to be defined"
531+
exit 1
532+
fi
533+
534+
elif [ ${PRECISION} == "int8" ]; then
535+
number_of_steps_arg=""
536+
if [ -n "${number_of_steps}" ] && [ ${BENCHMARK_ONLY} == "True" ]; then
537+
CMD="${CMD} --number-of-steps=${number_of_steps}"
538+
fi
539+
else
540+
echo "PRECISION=${PRECISION} is not supported for ${MODEL_NAME}"
541+
exit 1
542+
fi
543+
cd $original_dir
544+
PYTHONPATH=${PYTHONPATH} CMD=${CMD} run_model
545+
}
546+
547+
503548
# inceptionv4 model
504549
function inceptionv4() {
505550
# For accuracy, dataset location is required
@@ -644,6 +689,23 @@ function minigo() {
644689
fi
645690
else
646691
echo "MODE=${MODE} PRECISION=${PRECISION} is not supported for ${MODEL_NAME}"
692+
exit 1
693+
fi
694+
}
695+
# Mask R-CNN model
696+
function maskrcnn() {
697+
if [ ${PRECISION} == "fp32" ]; then
698+
original_dir=$(pwd)
699+
700+
if [ ${NOINSTALL} != "True" ]; then
701+
# install dependencies
702+
pip3 install -r ${MOUNT_BENCHMARK}/image_segmentation/tensorflow/maskrcnn/inference/fp32/requirements.txt
703+
fi
704+
export PYTHONPATH=${PYTHONPATH}:${MOUNT_EXTERNAL_MODELS_SOURCE}:${MOUNT_EXTERNAL_MODELS_SOURCE}/mrcnn
705+
CMD="${CMD} --data-location=${DATASET_LOCATION}"
706+
PYTHONPATH=${PYTHONPATH} CMD=${CMD} run_model
707+
else
708+
echo "PRECISION=${PRECISION} is not supported for ${MODEL_NAME}"
647709
exit 1
648710
fi
649711
}
@@ -692,30 +754,16 @@ function mtcc() {
692754

693755
# NCF model
694756
function ncf() {
695-
if [[ -n "${clean}" ]]; then
696-
CMD="${CMD} --clean"
697-
fi
698-
699-
# NCF supports different datasets including ml-1m and ml-20m.
700-
if [[ -n "${dataset}" && ${dataset} != "" ]]; then
701-
CMD="${CMD} --dataset=${dataset}"
702-
fi
703-
704-
if [[ -n "${te}" && ${te} != "" ]]; then
705-
CMD="${CMD} -te=${te}"
706-
fi
707-
708-
if [ ${PRECISION} == "fp32" -o ${PRECISION} == "bfloat16" ]; then
709-
# For ncf, if dataset location is empty, script downloads dataset at given location.
757+
if [ ${PRECISION} == "fp32" ]; then
758+
# For nfc, if dataset location is empty, script downloads dataset at given location.
710759
if [ ! -d "${DATASET_LOCATION}" ]; then
711-
mkdir -p ./dataset
712-
CMD="${CMD} --data-location=./dataset"
760+
mkdir -p /dataset
713761
fi
714762

715763
export PYTHONPATH=${PYTHONPATH}:${MOUNT_EXTERNAL_MODELS_SOURCE}
716764

717765
if [ ${NOINSTALL} != "True" ]; then
718-
pip install -r ${MOUNT_EXTERNAL_MODELS_SOURCE}/official/requirements.txt
766+
pip install -r ${MOUNT_BENCHMARK}/recommendation/tensorflow/ncf/inference/requirements.txt
719767
fi
720768

721769
PYTHONPATH=${PYTHONPATH} CMD=${CMD} run_model
@@ -999,8 +1047,12 @@ function ssd_vgg16() {
9991047
# UNet model
10001048
function unet() {
10011049
if [ ${PRECISION} == "fp32" ]; then
1050+
if [[ ${NOINSTALL} != "True" ]]; then
1051+
pip install -r "${MOUNT_BENCHMARK}/${USE_CASE}/${FRAMEWORK}/${MODEL_NAME}/requirements.txt"
1052+
fi
1053+
10021054
if [[ -z "${checkpoint_name}" ]]; then
1003-
echo "wavenet requires -- checkpoint_name arg to be defined"
1055+
echo "UNet requires -- checkpoint_name arg to be defined"
10041056
exit 1
10051057
fi
10061058
if [ ${ACCURACY_ONLY} == "True" ]; then
@@ -1116,7 +1168,7 @@ function wavenet() {
11161168
export PYTHONPATH=${PYTHONPATH}:${MOUNT_EXTERNAL_MODELS_SOURCE}
11171169

11181170
if [ ${NOINSTALL} != "True" ]; then
1119-
pip install -r ${MOUNT_EXTERNAL_MODELS_SOURCE}/requirements.txt
1171+
pip install librosa==0.5
11201172
fi
11211173

11221174
CMD="${CMD} --checkpoint_name=${checkpoint_name} \
@@ -1177,7 +1229,7 @@ function wide_deep_large_ds() {
11771229
TCMALLOC_LIB="libtcmalloc.so.4"
11781230
LIBTCMALLOC="$(ldconfig -p | grep $TCMALLOC_LIB | tr ' ' '\n' | grep /)"
11791231

1180-
if [[ -z "${LIBTCMALLOC}" ]]; then
1232+
if [[ -z $LIBTCMALLOC ]] && [[ $NOINSTALL != True ]]; then
11811233
echo "libtcmalloc.so.4 not found, trying to install"
11821234
apt-get update
11831235
apt-get install google-perftools --fix-missing -y
@@ -1196,7 +1248,7 @@ function wide_deep_large_ds() {
11961248
exit 1
11971249
fi
11981250
if [ ${MODE} == "training" ]; then
1199-
if [ ${steps} != None ]; then
1251+
if [[ ! -z $steps ]]; then
12001252
CMD="${CMD} --steps=${steps}"
12011253
fi
12021254
if [ ${PRECISION} == "fp32" ]; then
@@ -1256,12 +1308,16 @@ elif [ ${MODEL_NAME} == "faster_rcnn" ]; then
12561308
faster_rcnn
12571309
elif [ ${MODEL_NAME} == "mlperf_gnmt" ]; then
12581310
mlperf_gnmt
1311+
elif [ ${MODEL_NAME} == "ncf" ]; then
1312+
ncf
12591313
elif [ ${MODEL_NAME} == "inceptionv3" ]; then
12601314
resnet101_inceptionv3
12611315
elif [ ${MODEL_NAME} == "inceptionv4" ]; then
12621316
inceptionv4
12631317
elif [ ${MODEL_NAME} == "minigo" ]; then
12641318
minigo
1319+
elif [ ${MODEL_NAME} == "maskrcnn" ]; then
1320+
maskrcnn
12651321
elif [ ${MODEL_NAME} == "mobilenet_v1" ]; then
12661322
mobilenet_v1
12671323
elif [ ${MODEL_NAME} == "resnet101" ]; then
@@ -1280,6 +1336,8 @@ elif [ ${MODEL_NAME} == "transformer_lt_official" ]; then
12801336
transformer_lt_official
12811337
elif [ ${MODEL_NAME} == "transformer_mlperf" ]; then
12821338
transformer_mlperf
1339+
elif [ ${MODEL_NAME} == "unet" ]; then
1340+
unet
12831341
elif [ ${MODEL_NAME} == "wavenet" ]; then
12841342
wavenet
12851343
elif [ ${MODEL_NAME} == "wide_deep" ]; then

benchmarks/common/tensorflow_serving/start.sh

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -161,13 +161,13 @@ function resnet50v1_5(){
161161

162162
function ssd_mobilenet(){
163163
# Install protofbuf and other requirement
164-
165-
pip install Cython \
166-
contextlib2 \
167-
pillow \
168-
lxml \
169-
absl-py \
170-
tf_slim
164+
pip install \
165+
Cython \
166+
absl-py \
167+
contextlib2 \
168+
lxml \
169+
pillow>=7.1.0 \
170+
tf_slim
171171

172172
cd ${WORKSPACE}
173173
rm -rf tensorflow-models

benchmarks/image_recognition/tensorflow/densenet169/README.md

Lines changed: 4 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -10,34 +10,17 @@ following modes/precisions:
1010

1111
This step is required only for running accuracy, for running the model for performance we do not need to provide dataset.
1212

13-
Register and download the ImageNet dataset. Once you have the raw ImageNet dataset downloaded, we need to convert
14-
it to the TFRecord format. The TensorFlow models repo provides
15-
[scripts and instructions](https://github.com/tensorflow/models/tree/master/research/slim#an-automated-script-for-processing-imagenet-data)
16-
to download, process and convert the ImageNet dataset to the TF records format. After converting data, you should have a directory
17-
with the sharded dataset something like below, we only need `validation-*` files, discard `train-*` files:
18-
```
19-
$ ll /home/myuser/datasets/ImageNet_TFRecords
20-
-rw-r--r--. 1 user 143009929 Jun 20 14:53 train-00000-of-01024
21-
-rw-r--r--. 1 user 144699468 Jun 20 14:53 train-00001-of-01024
22-
-rw-r--r--. 1 user 138428833 Jun 20 14:53 train-00002-of-01024
23-
...
24-
-rw-r--r--. 1 user 143137777 Jun 20 15:08 train-01022-of-01024
25-
-rw-r--r--. 1 user 143315487 Jun 20 15:08 train-01023-of-01024
26-
-rw-r--r--. 1 user 52223858 Jun 20 15:08 validation-00000-of-00128
27-
-rw-r--r--. 1 user 51019711 Jun 20 15:08 validation-00001-of-00128
28-
-rw-r--r--. 1 user 51520046 Jun 20 15:08 validation-00002-of-00128
29-
...
30-
-rw-r--r--. 1 user 52508270 Jun 20 15:09 validation-00126-of-00128
31-
-rw-r--r--. 1 user 55292089 Jun 20 15:09 validation-00127-of-00128
32-
```
13+
Download and preprocess the ImageNet dataset using the [instructions here](/datasets/imagenet/README.md).
14+
After running the conversion script you should have a directory with the
15+
ImageNet dataset in the TF records format.
3316

3417
2. Download the pretrained model:
3518
```
3619
$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/densenet169_fp32_pretrained_model.pb
3720
```
3821

3922
3. Clone the [intelai/models](https://github.com/intelai/models) repo
40-
and then run the model scripts for either online or batch inference or accuracy. For --dataset-location in accuracy run, please use the ImageNet validation data path from step 1.
23+
and then run the model scripts for either online or batch inference or accuracy. For --data-location in accuracy run, please use the ImageNet validation data path from step 1.
4124
Each model run has user configurable arguments separated from regular arguments by '--' at the end of the command.
4225
Unless configured, these arguments will run with default values. Below are the example codes for each use case:
4326

benchmarks/image_recognition/tensorflow/inceptionv3/README.md

Lines changed: 8 additions & 32 deletions
Original file line numberDiff line numberDiff line change
@@ -41,33 +41,9 @@ $ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/inc
4141
4. If you would like to run Inception V3 inference with real data or test for
4242
accuracy, you will need the ImageNet dataset.
4343

44-
Register and download the
45-
[ImageNet dataset](http://image-net.org/download-images).
46-
47-
Once you have the raw ImageNet dataset downloaded, we need to convert
48-
it to the TFRecord format. This is done using the
49-
[build_imagenet_data.py](https://github.com/tensorflow/models/blob/master/research/inception/inception/data/build_imagenet_data.py)
50-
script. There are instructions in the header of the script explaining
51-
its usage.
52-
53-
After the script has completed, you should have a directory with the
54-
sharded dataset something like:
55-
56-
```
57-
$ ll /home/<user>/datasets/ImageNet_TFRecords
58-
-rw-r--r--. 1 user 143009929 Jun 20 14:53 train-00000-of-01024
59-
-rw-r--r--. 1 user 144699468 Jun 20 14:53 train-00001-of-01024
60-
-rw-r--r--. 1 user 138428833 Jun 20 14:53 train-00002-of-01024
61-
...
62-
-rw-r--r--. 1 user 143137777 Jun 20 15:08 train-01022-of-01024
63-
-rw-r--r--. 1 user 143315487 Jun 20 15:08 train-01023-of-01024
64-
-rw-r--r--. 1 user 52223858 Jun 20 15:08 validation-00000-of-00128
65-
-rw-r--r--. 1 user 51019711 Jun 20 15:08 validation-00001-of-00128
66-
-rw-r--r--. 1 user 51520046 Jun 20 15:08 validation-00002-of-00128
67-
...
68-
-rw-r--r--. 1 user 52508270 Jun 20 15:09 validation-00126-of-00128
69-
-rw-r--r--. 1 user 55292089 Jun 20 15:09 validation-00127-of-00128
70-
```
44+
Download and preprocess the ImageNet dataset using the [instructions here](/datasets/imagenet/README.md).
45+
After running the conversion script you should have a directory with the
46+
ImageNet dataset in the TF records format.
7147

7248
5. Next, navigate to the `benchmarks` directory in your local clone of
7349
the [intelai/models](https://github.com/IntelAI/models) repo from step 1.
@@ -230,11 +206,11 @@ $ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_8/inc
230206
```
231207

232208
3. If you would like to run Inception V3 FP32 inference and test for
233-
accuracy, you will need the ImageNet dataset. Running for online
234-
and batch inference do not require the ImageNet dataset. Instructions for
235-
downloading the dataset and converting it to the TF Records format can
236-
be found in the TensorFlow documentation
237-
[here](https://github.com/tensorflow/models/tree/master/research/slim#an-automated-script-for-processing-imagenet-data).
209+
accuracy, you will need the ImageNet dataset.
210+
211+
Download and preprocess the ImageNet dataset using the [instructions here](/datasets/imagenet/README.md).
212+
After running the conversion script you should have a directory with the
213+
ImageNet dataset in the TF records format.
238214

239215
4. Navigate to the `benchmarks` directory in your local clone of
240216
the [intelai/models](https://github.com/IntelAI/models) repo from step 1.

0 commit comments

Comments
 (0)