Skip to content

Commit 1e22b92

Browse files
rchinnaclaynerobison
authored andcommitted
Adding link for pretrained FP32 and INT8 models (#197)
Adding link for Kaggle Display Advertising Challenge Dataset download Signed-off-by: Rajendrakumar Chinnaiyan <[email protected]>
1 parent 8cad7da commit 1e22b92

File tree

1 file changed

+29
-27
lines changed
  • benchmarks/recommendation/tensorflow/wide_deep_large_ds

1 file changed

+29
-27
lines changed

benchmarks/recommendation/tensorflow/wide_deep_large_ds/README.md

100644100755
Lines changed: 29 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -11,25 +11,26 @@ Benchmarking instructions and scripts for model training coming later.
1111
## INT8 Inference Instructions
1212

1313

14-
1. Download large <> dataset income dataset from <>:
15-
16-
To be updated post dataset approval
17-
14+
1. Download large Kaggle Display Advertising Challenge Dataset from
15+
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
16+
1817
2. Pre-process the downloaded dataset to tfrecords using [preprocess_csv_tfrecords.py](/models/recommendation/tensorflow/wide_deep_large_ds/dataset/preprocess_csv_tfrecords.py)
19-
2018
```
21-
$ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
19+
$ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
20+
```
21+
3. Download and extract the pre-trained model.
22+
```
23+
$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/wide_deep_int8_pretrained_model.pb
2224
```
23-
24-
3. Clone the [intelai/models](https://github.com/intelai/models) repo.
25+
4. Clone the [intelai/models](https://github.com/intelai/models) repo.
2526
2627
This repo has the launch script for running benchmarks, which we will
2728
use in the next step.
2829
2930
```
3031
$ git clone https://github.com/IntelAI/models.git
3132
```
32-
4. How to run benchmarks
33+
5. How to run benchmarks
3334
3435
* Running benchmarks in latency mode, set `--batch-size 1`
3536
```
@@ -44,7 +45,7 @@ Benchmarking instructions and scripts for model training coming later.
4445
--batch-size 1 \
4546
--socket-id 0 \
4647
--docker-image tensorflow/tensorflow:latest-mkl \
47-
--in-graph /root/user/wide_deep_files/int8_wide_deep_final.pb \
48+
--in-graph /root/user/wide_deep_files/wide_deep_int8_pretrained_model.pb \
4849
--data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
4950
```
5051
* Running benchmarks in throughput mode, set `--batch-size 1024`
@@ -60,7 +61,7 @@ Benchmarking instructions and scripts for model training coming later.
6061
--batch-size 1024 \
6162
--socket-id 0 \
6263
--docker-image tensorflow/tensorflow:latest-mkl \
63-
--in-graph /root/user/wide_deep_files/int8_wide_deep_final.pb \
64+
--in-graph /root/user/wide_deep_files/wide_deep_int8_pretrained_model.pb \
6465
--data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
6566
```
6667
6. The log file is saved to the value of `--output-dir`.
@@ -69,7 +70,6 @@ Benchmarking instructions and scripts for model training coming later.
6970
something like this:
7071
7172
```
72-
7373
--------------------------------------------------
7474
Total test records : 2000000
7575
No of correct predicitons : 1549508
@@ -80,31 +80,33 @@ Benchmarking instructions and scripts for model training coming later.
8080
Latency (millisecond/batch) : 0.000988
8181
Throughput is (records/sec) : 1151892.25
8282
--------------------------------------------------
83-
numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/int8_wide_deep_final.pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
83+
numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/wide_deep_int8_pretrained_model.pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
8484
Ran inference with batch size 1024
8585
Log location outside container: {--output-dir value}/benchmark_wide_deep_large_ds_inference_int8_20190225_061815.log
8686
```
8787
8888
## FP32 Inference Instructions
8989
90-
1. Download large <> dataset income dataset from <>:
91-
92-
To be updated post dataset approval
93-
94-
2. Pre-process the downloaded dataset to tfrecords using [preprocess_csv_tfrecords.py](../../../../models/recommendation/tensorflow/wide_deep_large_ds/dataset/preprocess_csv_tfrecords.py)
95-
96-
```
97-
$ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
98-
```
99-
3. Clone the [intelai/models](https://github.com/intelai/models) repo.
90+
1. Download large Kaggle Display Advertising Challenge Dataset from
91+
http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
92+
93+
2. Pre-process the downloaded dataset to tfrecords using [preprocess_csv_tfrecords.py](/models/recommendation/tensorflow/wide_deep_large_ds/dataset/preprocess_csv_tfrecords.py)
94+
```
95+
$ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
96+
```
97+
3. Download and extract the pre-trained model.
98+
```
99+
$ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/wide_deep_fp32_pretrained_model.pb
100+
```
101+
4. Clone the [intelai/models](https://github.com/intelai/models) repo.
100102
101103
This repo has the launch script for running benchmarks, which we will
102104
use in the next step.
103105
104106
```
105107
$ git clone https://github.com/IntelAI/models.git
106108
```
107-
4. How to run benchmarks
109+
5. How to run benchmarks
108110
109111
* Running benchmarks in latency mode, set `--batch-size 1`
110112
```
@@ -119,7 +121,7 @@ Benchmarking instructions and scripts for model training coming later.
119121
--batch-size 1 \
120122
--socket-id 0 \
121123
--docker-image tensorflow/tensorflow:latest-mkl \
122-
--in-graph /root/user/wide_deep_files/fp32_wide_deep_final.pb \
124+
--in-graph /root/user/wide_deep_files/wide_deep_fp32_pretrained_model.pb \
123125
--data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
124126
```
125127
* Running benchmarks in throughput mode, set `--batch-size 1024`
@@ -135,7 +137,7 @@ Benchmarking instructions and scripts for model training coming later.
135137
--batch-size 1024 \
136138
--socket-id 0 \
137139
--docker-image tensorflow/tensorflow:latest-mkl \
138-
--in-graph /root/user/wide_deep_files/fp32_wide_deep_final.pb \
140+
--in-graph /root/user/wide_deep_files/wide_deep_fp32_pretrained_model.pb \
139141
--data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
140142
```
141143
6. The log file is saved to the value of `--output-dir`.
@@ -155,7 +157,7 @@ Benchmarking instructions and scripts for model training coming later.
155157
Latency (millisecond/batch) : 0.001749
156158
Throughput is (records/sec) : 571802.228
157159
--------------------------------------------------
158-
numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/fp32_wide_deep_final.pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
160+
numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/wide_deep_fp32_pretrained_model.pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
159161
Ran inference with batch size 1024
160162
Log location outside container: {--output-dir value}/benchmark_wide_deep_large_ds_inference_fp32_20190225_062206.log
161163

0 commit comments

Comments
 (0)