@@ -11,25 +11,26 @@ Benchmarking instructions and scripts for model training coming later.
1111## INT8 Inference Instructions
1212
1313
14- 1 . Download large <> dataset income dataset from <>:
15-
16- To be updated post dataset approval
17-
14+ 1 . Download large Kaggle Display Advertising Challenge Dataset from
15+ http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
16+
18172 . Pre-process the downloaded dataset to tfrecords using [ preprocess_csv_tfrecords.py] ( /models/recommendation/tensorflow/wide_deep_large_ds/dataset/preprocess_csv_tfrecords.py )
19-
2018 ```
21- $ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
19+ $ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
20+ ```
21+ 3. Download and extract the pre-trained model.
22+ ```
23+ $ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/wide_deep_int8_pretrained_model.pb
2224 ```
23-
24- 3. Clone the [intelai/models](https://github.com/intelai/models) repo.
25+ 4. Clone the [intelai/models](https://github.com/intelai/models) repo.
2526
2627 This repo has the launch script for running benchmarks, which we will
2728 use in the next step.
2829
2930 ```
3031 $ git clone https://github.com/IntelAI/models.git
3132 ```
32- 4 . How to run benchmarks
33+ 5 . How to run benchmarks
3334
3435 * Running benchmarks in latency mode, set `--batch-size 1`
3536 ```
@@ -44,7 +45,7 @@ Benchmarking instructions and scripts for model training coming later.
4445 --batch-size 1 \
4546 --socket-id 0 \
4647 --docker-image tensorflow/tensorflow:latest-mkl \
47- --in-graph /root/user/wide_deep_files/int8_wide_deep_final .pb \
48+ --in-graph /root/user/wide_deep_files/wide_deep_int8_pretrained_model .pb \
4849 --data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
4950 ```
5051 * Running benchmarks in throughput mode, set `--batch-size 1024`
@@ -60,7 +61,7 @@ Benchmarking instructions and scripts for model training coming later.
6061 --batch-size 1024 \
6162 --socket-id 0 \
6263 --docker-image tensorflow/tensorflow:latest-mkl \
63- --in-graph /root/user/wide_deep_files/int8_wide_deep_final .pb \
64+ --in-graph /root/user/wide_deep_files/wide_deep_int8_pretrained_model .pb \
6465 --data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
6566 ```
66676. The log file is saved to the value of `--output-dir`.
@@ -69,7 +70,6 @@ Benchmarking instructions and scripts for model training coming later.
6970 something like this:
7071
7172 ```
72-
7373 --------------------------------------------------
7474 Total test records : 2000000
7575 No of correct predicitons : 1549508
@@ -80,31 +80,33 @@ Benchmarking instructions and scripts for model training coming later.
8080 Latency (millisecond/batch) : 0.000988
8181 Throughput is (records/sec) : 1151892.25
8282 --------------------------------------------------
83- numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/int8_wide_deep_final .pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
83+ numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/wide_deep_int8_pretrained_model .pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
8484 Ran inference with batch size 1024
8585 Log location outside container: {--output-dir value}/benchmark_wide_deep_large_ds_inference_int8_20190225_061815.log
8686 ```
8787
8888## FP32 Inference Instructions
8989
90- 1. Download large <> dataset income dataset from <>:
91-
92- To be updated post dataset approval
93-
94- 2. Pre-process the downloaded dataset to tfrecords using [preprocess_csv_tfrecords.py](../../../../models/recommendation/tensorflow/wide_deep_large_ds/dataset/preprocess_csv_tfrecords.py)
95-
96- ```
97- $ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
98- ```
99- 3. Clone the [intelai/models](https://github.com/intelai/models) repo.
90+ 1. Download large Kaggle Display Advertising Challenge Dataset from
91+ http://labs.criteo.com/2014/02/kaggle-display-advertising-challenge-dataset/
92+
93+ 2. Pre-process the downloaded dataset to tfrecords using [preprocess_csv_tfrecords.py](/models/recommendation/tensorflow/wide_deep_large_ds/dataset/preprocess_csv_tfrecords.py)
94+ ```
95+ $ python3.6 preprocess_csv_tfrecords.py --csv-datafile eval.csv
96+ ```
97+ 3. Download and extract the pre-trained model.
98+ ```
99+ $ wget https://storage.googleapis.com/intel-optimized-tensorflow/models/wide_deep_fp32_pretrained_model.pb
100+ ```
101+ 4. Clone the [intelai/models](https://github.com/intelai/models) repo.
100102
101103 This repo has the launch script for running benchmarks, which we will
102104 use in the next step.
103105
104106 ```
105107 $ git clone https://github.com/IntelAI/models.git
106108 ```
107- 4 . How to run benchmarks
109+ 5 . How to run benchmarks
108110
109111 * Running benchmarks in latency mode, set `--batch-size 1`
110112 ```
@@ -119,7 +121,7 @@ Benchmarking instructions and scripts for model training coming later.
119121 --batch-size 1 \
120122 --socket-id 0 \
121123 --docker-image tensorflow/tensorflow:latest-mkl \
122- --in-graph /root/user/wide_deep_files/fp32_wide_deep_final .pb \
124+ --in-graph /root/user/wide_deep_files/wide_deep_fp32_pretrained_model .pb \
123125 --data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
124126 ```
125127 * Running benchmarks in throughput mode, set `--batch-size 1024`
@@ -135,7 +137,7 @@ Benchmarking instructions and scripts for model training coming later.
135137 --batch-size 1024 \
136138 --socket-id 0 \
137139 --docker-image tensorflow/tensorflow:latest-mkl \
138- --in-graph /root/user/wide_deep_files/fp32_wide_deep_final .pb \
140+ --in-graph /root/user/wide_deep_files/wide_deep_fp32_pretrained_model .pb \
139141 --data-location /root/user/wide_deep_files/preprocessed_eval.tfrecords
140142 ```
1411436. The log file is saved to the value of `--output-dir`.
@@ -155,7 +157,7 @@ Benchmarking instructions and scripts for model training coming later.
155157 Latency (millisecond/batch) : 0.001749
156158 Throughput is (records/sec) : 571802.228
157159 --------------------------------------------------
158- numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/fp32_wide_deep_final .pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
160+ numactl --cpunodebind=0 --membind=0 python /workspace/intelai_models/int8/inference.py --input-graph=/in_graph/wide_deep_fp32_pretrained_model .pb --inter-op-parallelism-threads=28 --intra-op-parallelism-threads=1 --omp-num-threads=1 --batch-size=1024 --kmp-blocktime=0 --datafile-path=/dataset
159161 Ran inference with batch size 1024
160162 Log location outside container: {--output-dir value}/benchmark_wide_deep_large_ds_inference_fp32_20190225_062206.log
161163
0 commit comments