-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_experiment.py
191 lines (159 loc) · 6.59 KB
/
run_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import os
import anndata2ri
import numpy as np
import rpy2.robjects as ro
import scanpy as sc
import scvi
from constants import METHODS
from rpy2.robjects import r
from rpy2.robjects.conversion import localconverter
from rpy2.robjects.packages import importr
from .data.datasets import available_datasets, get_dataset
from .models.contrastive_vi import ContrastiveVIModel
from .models.contrastive_vi_plus import ContrastiveVIPlusModel
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", choices=list(available_datasets.keys()))
parser.add_argument("--method", choices=METHODS)
parser.add_argument("--mmd_penalty", type=float, default=1000)
parser.add_argument("--n_classifier_layers", type=int, default=3)
parser.add_argument("--seed", type=int, default=123)
parser.add_argument(
"--inference_strategy", type=str, choices=["marginalize", "gumbel_sigmoid"]
)
parser.add_argument("--learn_basal_mean", action="store_true")
parser.add_argument("--early_stopping", action="store_true")
args = parser.parse_args()
scvi.settings.seed = args.seed
r(f"set.seed({args.seed})")
if args.dataset == "papalexi_2021":
mdata = get_dataset(args.dataset)
adata = mdata["rna"]
# Manually obtained genes with non-trivial effect sizes from the mixscape paper.
# This filtering wasn't necessary for other datasets, as those gense were already
# selected for strong effect sizes.
strong_effect_genes = [
"JAK2",
"STAT1",
"IFNGR1",
"IFNGR2",
"IRF1",
"SMAD4",
"STAT2",
"BRD4",
"MYC",
"CUL3",
"SPI1",
]
background_indices = np.where(~adata.obs["gene"].isin(strong_effect_genes))[0]
target_indices = np.where(adata.obs["gene"].isin(strong_effect_genes))[0]
pert_label = "gene"
control_label = "NT"
elif args.dataset == "norman_2019":
adata = get_dataset(args.dataset)
pert_label = "guide_merged"
control_label = "ctrl"
background_indices = np.where(adata.obs["gene_program"] == "Ctrl")[0]
target_indices = np.where(adata.obs["gene_program"] != "Ctrl")[0]
elif args.dataset == "replogle_2022":
adata = get_dataset(args.dataset)
pert_label = "gene"
control_label = "non-targeting"
background_indices = np.where(adata.obs[pert_label] == control_label)[0]
target_indices = np.where(adata.obs[pert_label] != control_label)[0]
results_dir = os.path.join("results", args.dataset, args.method, f"seed_{args.seed}")
if args.method == "mixscape":
seurat = importr("Seurat")
importr("purrr")
# First convert AnnData to SingleCellExperiment object
with localconverter(anndata2ri.converter):
sce = ro.conversion.get_conversion().py2rpy(adata)
# Convert SingleCellExperiment object to Seurat object
seurat_obj = r("partial(as.Seurat, data=NULL)")(sce)
# Pass the Seurat object into the R global environment
ro.globalenv["seurat_obj"] = seurat_obj
# Replace the 'orignalexp' assay produced by SCE with a more standard label ('RNA')
r("seurat_obj[['RNA']] = seurat_obj[['originalexp']]")
r("DefaultAssay(seurat_obj) <- 'RNA'")
r("seurat_obj[['originalexp']] = NULL")
# Flag all features as variable for Seurat since we already subsetted to HVGs during preprocessing
r("VariableFeatures(seurat_obj) <- rownames(seurat_obj)")
# Normalize + calculate PCA as done in Seurat
r("seurat_obj <- NormalizeData(object = seurat_obj) %>% ScaleData()")
r("seurat_obj <- RunPCA(object = seurat_obj)")
# Calculate "perturbation signature" (PRTB) as defined by Papalexi et al.
r(
f"seurat_obj <- CalcPerturbSig(object = seurat_obj, assay = 'RNA', slot = 'data', gd.class = '{pert_label}', nt.cell.class = '{control_label}', reduction = 'pca', num.neighbors = 20, new.assay.name = 'PRTB')"
)
# Prepare PRTB assay for dimensionality reduction
r("DefaultAssay(object = seurat_obj) <- 'PRTB'")
# Run mixscape
r(
f"seurat_obj <- RunMixscape(object = seurat_obj, assay = 'PRTB', slot = 'scale.data', labels = '{pert_label}', nt.class.name = '{control_label}', min.de.genes = 5, iter.num = 100, de.assay = 'RNA', verbose = F, prtb.type = 'KO')"
)
pert_probs = np.array(r("seurat_obj$mixscape_class_p_ko"))
adata_pert = sc.AnnData(X=np.array(r('seurat_obj[["PRTB"]]$data')).T, obs=adata.obs)
sc.pp.pca(adata_pert)
salient_latent_rep = adata_pert.obsm["X_pca"]
background_latent_rep = None
elif args.method == "contrastive_vi":
ContrastiveVIModel.setup_anndata(
adata,
layer="counts",
)
model = ContrastiveVIModel(adata)
model.train(
background_indices=background_indices,
target_indices=target_indices,
max_epochs=500,
use_gpu=True,
early_stopping=args.early_stopping,
)
salient_latent_rep = model.get_latent_representation(
adata, representation_kind="salient"
)
background_latent_rep = model.get_latent_representation(
adata, representation_kind="background"
)
pert_probs = None
results_dir = os.path.join(results_dir, f"early_stopping_{args.early_stopping}")
elif args.method == "contrastive_vi_plus":
ContrastiveVIPlusModel.setup_anndata(adata, layer="counts", labels_key=pert_label)
model = ContrastiveVIPlusModel(
adata,
learn_basal_mean=args.learn_basal_mean,
n_classifier_layers=args.n_classifier_layers,
mmd_penalty=args.mmd_penalty,
inference_strategy=args.inference_strategy,
)
model.train(
background_indices=background_indices,
target_indices=target_indices,
max_epochs=500,
use_gpu=True,
early_stopping=args.early_stopping,
)
pert_probs = model.predict()
salient_latent_rep = model.get_latent_representation(
adata, representation_kind="salient"
)
background_latent_rep = model.get_latent_representation(
adata, representation_kind="background"
)
results_dir = os.path.join(
results_dir,
f"inference_{args.inference_strategy}",
f"early_stopping_{args.early_stopping}",
f"learn_basal_mean_{args.learn_basal_mean}",
f"n_classifier_layers_{args.n_classifier_layers}",
f"mmd_penalty_{args.mmd_penalty}",
)
os.makedirs(results_dir, exist_ok=True)
np.save(os.path.join(results_dir, "salient_latent_rep.npy"), salient_latent_rep)
if background_latent_rep is not None:
np.save(
os.path.join(results_dir, "background_latent_rep.npy"), background_latent_rep
)
if pert_probs is not None:
np.save(os.path.join(results_dir, "pert_probs.npy"), pert_probs)
print(f"Results saved at {results_dir}")