-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
274 lines (236 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# -*- coding: utf-8 -*-
# file: train.py
# date: 2023-09-22
import pdb
import sys
import os
import tempfile
import json
import torch
import ray.train
import torch.nn.functional as F
from typing import Dict
from transformers import AutoTokenizer
from torch import device
from torch import LongTensor, FloatTensor, IntTensor
from torch.utils.data import DataLoader
from torch.optim import AdamW
from torch.optim.lr_scheduler import LinearLR
from tqdm import tqdm
from ray.train import ScalingConfig
from ray.train.torch import TorchTrainer
from src.plm_icd_multi_label_classifier import text
from src.plm_icd_multi_label_classifier.model import PlmMultiLabelEncoder
from src.plm_icd_multi_label_classifier.data import TextOnlyDataset
from src.plm_icd_multi_label_classifier.metrics import metrics_func, topk_metrics_func
def init_with_ckpt(net: PlmMultiLabelEncoder, ckpt_root_path: str, engine: str) -> None:
ckpts: List[str] = [x for x in os.listdir(ckpt_root_path) if x != "bak"]
if len(ckpts) == 0:
print("No existing CKPT")
return
ckpts = sorted(
ckpts,
key=lambda x: int(x.split("-")[0].replace("step", "")), reverse=True
)
ckpt_path = os.path.join(ckpt_root_path, ckpts[0], "model.pt")
if engine == "torch":
net.load_state_dict(torch.load(ckpt_path))
elif engine == "ray":
net.module.load_state_dict(torch.load(ckpt_path))
print("Finished loading CKPT from %s" % ckpt_path)
print(
"Please remember to remove original CKPT '%s' manually"
% os.path.join(ckpt_root_path, ckpts[0])
)
def loss_fn(
logits: FloatTensor, label_one_hot: FloatTensor, bias: float=1e-10
) -> FloatTensor:
label_probs: FloatTensor = torch.sigmoid(logits) + bias
bin_cross_entropies: FloatTensor = \
label_one_hot.mul(torch.log(label_probs)) \
+ (1 - label_one_hot).mul(torch.log(1 - label_probs))
loss: FloatTensor = -bin_cross_entropies.mean(dim=1)
return loss.mean()
def eval(
model: PlmMultiLabelEncoder, dataloader: DataLoader, device: device=None,
max_sample: int=1e4
) -> Dict[str, float]:
out: Dict[str, float] = {}
total_cnt: int = 0
all_logits: List[FloatTensor] = []
all_label_one_hots: List[FloatTensor] = []
model.eval()
with torch.no_grad():
for batch in dataloader:
curr_label_one_hot: FloatTensor = None
curr_text_ids: LongTensor = None
curr_attn_masks: LongTensor = None
curr_text_ids, curr_attn_masks, curr_label_one_hot = batch
if device is not None:
curr_label_one_hot = curr_label_one_hot.to(device)
curr_text_ids = curr_text_ids.to(device)
curr_attn_masks = curr_attn_masks.to(device)
curr_logits: FloatTensor = model(curr_text_ids, curr_attn_masks)
all_logits.append(curr_logits)
all_label_one_hots.append(curr_label_one_hot)
total_cnt += curr_text_ids.shape[0]
if total_cnt >= max_sample:
break
logits: FloatTensor = torch.concat(all_logits, dim=0)
output_label_probs: FloatTensor = torch.sigmoid(logits)
output_one_hot: FloatTensor = (output_label_probs > 0.5).float()
label_one_hot: FloatTensor = torch.concat(all_label_one_hots, dim=0)
# Loss
loss: float = float(
F.binary_cross_entropy(output_label_probs, label_one_hot).cpu()
)
# Metrics
prob50_metrics: Dict[str, float] = metrics_func(
output_one_hot.int(), label_one_hot.int()
)
top5_metrics: Dict[str, float] = topk_metrics_func(logits, label_one_hot, top_k=5)
top8_metrics: Dict[str, float] = topk_metrics_func(logits, label_one_hot, top_k=8)
top15_metrics: Dict[str, float] = topk_metrics_func(logits, label_one_hot, top_k=15)
out = {
"loss": round(loss, 8),
"micro_recall": round(prob50_metrics["micro_recall"], 4),
"micro_precision": round(prob50_metrics["micro_precision"], 4),
"micro_f1": round(prob50_metrics["micro_f1"], 4),
"macro_recall": round(prob50_metrics["macro_recall"], 4),
"macro_precision": round(prob50_metrics["macro_precision"], 4),
"macro_f1": round(prob50_metrics["macro_f1"], 4),
"micro_recall@5": round(top5_metrics["micro_recall@5"], 4),
"micro_precision@5": round(top5_metrics["micro_precision@5"], 4),
"micro_f1@5": round(top5_metrics["micro_f1@5"], 4),
"macro_recall@5": round(top5_metrics["macro_recall@5"], 4),
"macro_precision@5": round(top5_metrics["macro_precision@5"], 4),
"macro_f1@5": round(top5_metrics["macro_f1@5"], 4),
"micro_recall@8": round(top8_metrics["micro_recall@8"], 4),
"micro_precision@8": round(top8_metrics["micro_precision@8"], 4),
"micro_f1@8": round(top8_metrics["micro_f1@8"], 4),
"macro_recall@8": round(top8_metrics["macro_recall@8"], 4),
"macro_precision@8": round(top8_metrics["macro_precision@8"], 4),
"macro_f1@8": round(top8_metrics["macro_f1@8"], 4),
"micro_recall@15": round(top15_metrics["micro_recall@15"], 4),
"micro_precision@15": round(top15_metrics["micro_precision@15"], 4),
"micro_f1@15": round(top15_metrics["micro_f1@15"], 4),
"macro_recall@15": round(top15_metrics["macro_recall@15"], 4),
"macro_precision@15": round(top15_metrics["macro_precision@15"], 4),
"macro_f1@15": round(top15_metrics["macro_f1@15"], 4)
}
return out
def train_func(configs: Dict) -> None:
torch.manual_seed(configs["random_seed"])
device: device = None
if configs["training_engine"] == "torch":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
data_dict_path: str = os.path.join(configs["data_dir"], "dict.json")
train_data_path: str = os.path.join(configs["data_dir"], "train.jsonl")
dev_data_path: str = os.path.join(configs["data_dir"], "dev.jsonl")
data_dict: Dict = json.loads(open(data_dict_path, "r").read())
tokenizer: AutoTokenizer = AutoTokenizer.from_pretrained(configs["hf_lm"])
model: PlmMultiLabelEncoder = PlmMultiLabelEncoder(
len(data_dict["label2id"]),
configs["hf_lm"], configs["lm_hidden_dim"], configs["chunk_size"], configs["chunk_num"]
)
init_with_ckpt(model, configs["ckpt_dir"], "torch")
train_dataset: TextOnlyDataset = TextOnlyDataset(
train_data_path, data_dict_path, tokenizer,
text_col=configs["text_col"], label_col=configs["label_col"],
chunk_size=configs["chunk_size"], chunk_num=configs["chunk_num"],
data_format="jsonl"
)
dev_dataset: TextOnlyDataset = TextOnlyDataset(
dev_data_path, data_dict_path, tokenizer,
text_col=configs["text_col"], label_col=configs["label_col"],
chunk_size=configs["chunk_size"], chunk_num=configs["chunk_num"],
data_format="jsonl"
)
train_dataloader: DataLoader = DataLoader(
train_dataset, batch_size=configs["single_worker_batch_size"], shuffle=True
)
dev_dataloader: DataLoader = DataLoader(dev_dataset, batch_size=64, shuffle=True)
optimizer: AdamW = AdamW(model.parameters(), lr=configs["lr"])
scheduler = LinearLR(optimizer, total_iters=2000)
if configs["training_engine"] == "torch":
model.to(device)
elif configs["training_engine"] == "ray":
model = ray.train.torch.prepare_model(model)
train_dataloader = ray.train.torch.prepare_data_loader(train_dataloader)
dev_dataloader = ray.train.torch.prepare_data_loader(dev_dataloader)
global_step_id: int = 0
for epoch_id, epoch in enumerate(range(configs["epochs"])):
for batch_id, batch in enumerate(train_dataloader):
optimizer.zero_grad()
label_one_hot: FloatTensor = None
text_ids: LongTensor = None
attn_masks: LongTensor = None
text_ids, attn_masks, label_one_hot = batch
label_one_hot = label_one_hot.to(device)
text_ids = text_ids.to(device)
attn_masks = attn_masks.to(device)
model.train()
logits: FloatTensor = model(text_ids, attn_masks)
#loss: FloatTensor = loss_fn(logits, label_one_hot)
loss: FloatTensor = F.binary_cross_entropy(torch.sigmoid(logits), label_one_hot)
loss.backward()
optimizer.step()
model.eval()
if batch_id % 10 == 0 and configs["training_engine"] == "torch":
print("loss=%f" % loss)
if batch_id % configs["log_period"] == 0:
eval_metrics: Dict[str, float] = eval(
model, dev_dataloader, device, configs["single_worker_eval_size"]
)
eval_metrics["train_loss"] = round(float(loss.detach().cpu()), 6)
eval_metrics["epoch"] = epoch_id
eval_metrics["batch"] = batch_id
eval_metrics["step"] = global_step_id
if configs["training_engine"] == "torch":
print(eval_metrics)
elif configs["training_engine"] == "ray":
ray.train.report(metrics=eval_metrics)
if global_step_id % configs["dump_period"] == 0:
version: str = "step{}-batch{}-epoch{}".format(global_step_id, batch_id, epoch_id)
ckpt_dir: str = os.path.join(configs["ckpt_dir"], version)
os.system("mkdir -p %s" % ckpt_dir)
print("Saving ckpt to %s" % ckpt_dir)
if configs["training_engine"] == "torch":
open(os.path.join(ckpt_dir, "train.json"), "w").write(json.dumps(configs))
torch.save(model.state_dict(), os.path.join(ckpt_dir, "model.pt"))
elif configs["training_engine"] == "ray":
if ray.train.get_context().get_world_rank() == 0:
open(os.path.join(ckpt_dir, "train.json"), "w").write(json.dumps(configs))
torch.save(model.module.state_dict(), os.path.join(ckpt_dir, "model.pt"))
global_step_id += 1
final_ckpt_dir: str = os.path.join(configs["ckpt_dir"], "final")
os.system("mkdir -p %s" % final_ckpt_dir)
print("Saving final ckpt to %s" % final_ckpt_dir)
if configs["training_engine"] == "torch":
open(os.path.join(final_ckpt_dir, "train.json"), "w").write(json.dumps(configs))
torch.save(model.state_dict(), os.path.join(final_ckpt_dir, "model.pt"))
elif configs["training_engine"] == "ray":
if ray.train.get_context().get_world_rank() == 0:
open(os.path.join(final_ckpt_dir, "train.json"), "w").write(json.dumps(configs))
torch.save(model.module.state_dict(), os.path.join(final_ckpt_dir, "model.pt"))
if __name__ == "__main__":
train_conf: Dict = json.loads(open(sys.argv[1], "r").read())
train_conf["data_dir"] = os.path.abspath(train_conf["data_dir"])
train_conf["ckpt_dir"] = os.path.abspath(train_conf["ckpt_dir"])
if os.path.exists(train_conf["hf_lm"]):
train_conf["hf_lm"] = os.path.abspath(train_conf["hf_lm"])
print("Training config:\n{}".format(train_conf))
os.system("mkdir -p %s" % train_conf["ckpt_dir"])
if train_conf["training_engine"] == "torch":
train_func(train_conf)
elif train_conf["training_engine"] == "ray":
scaling_config = ScalingConfig(
num_workers=train_conf["workers"], use_gpu=(train_conf["gpu"] == "true")
)
trainer = TorchTrainer(
train_loop_per_worker=train_func,
train_loop_config=train_conf,
scaling_config=scaling_config,
)
result = trainer.fit()
print(f"Training result: {result}")