-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathwsgi.py
72 lines (67 loc) · 2.31 KB
/
wsgi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# Licensed to the Technische Universität Darmstadt under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The Technische Universität Darmstadt
# licenses this file to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ariadne.contrib.test import TestRecommender
from ariadne.server import Server
from ariadne.util import setup_logging
from ariadne.contrib.spacy import SpacyNerClassifier
setup_logging()
server = Server()
server.add_classifier("spacy_ner", SpacyNerClassifier("en_core_web_sm"))
# server.add_classifier("spacy_pos", SpacyPosClassifier("en_core_web_sm"))
# server.add_classifier("sklearn_sentence", SklearnSentenceClassifier())
# server.add_classifier("jieba", JiebaSegmenter())
# server.add_classifier("stemmer", NltkStemmer())
# server.add_classifier("leven", LevenshteinStringMatcher())
# server.add_classifier("sbert", SbertSentenceClassifier())
# server.add_classifier(
# "adapter_pos",
# AdapterSequenceTagger(
# base_model_name="bert-base-uncased",
# adapter_name="pos/ldc2012t13@vblagoje",
# labels=[
# "ADJ",
# "ADP",
# "ADV",
# "AUX",
# "CCONJ",
# "DET",
# "INTJ",
# "NOUN",
# "NUM",
# "PART",
# "PRON",
# "PROPN",
# "PUNCT",
# "SCONJ",
# "SYM",
# "VERB",
# "X",
# ],
# ),
# )
#
# server.add_classifier(
# "adapter_sent",
# AdapterSentenceClassifier(
# "bert-base-multilingual-uncased",
# "sentiment/hinglish-twitter-sentiment@nirantk",
# labels=["negative", "positive"],
# config="pfeiffer",
# ),
# )
app = server._app
if __name__ == "__main__":
server.start(debug=True, port=40022)