forked from SFrav/Ruminant-feed-balance-2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRuminant_feed_balance_modelling.qmd
908 lines (676 loc) · 49.5 KB
/
Ruminant_feed_balance_modelling.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
---
title: ""
format:
pdf:
cite-method: natbib
include-in-header:
- text: |
\usepackage{afterpage}
\def\blankpage{%
\clearpage%
\thispagestyle{empty}%
\addtocounter{page}{-1}%
\null%
\clearpage}
toc: true
number-sections: true
number-depth: 3
number-by: equations
crossref:
lof-title: "List of Figures"
bibliography: references.bib
link-citations: true
header-includes:
\usepackage{fancyhdr}
\usepackage{graphicx}
\usepackage{pdflscape}
\bibliographystyle{apalike}
\usepackage{hyperref}
\usepackage{eso-pic}
\usepackage{threeparttable}
\usepackage{float}
\usepackage{sectsty}
\usepackage{amsmath}
\usepackage{tikz}
\usepackage[round]{natbib}
\usepackage{fvextra}
\usepackage{booktabs}
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{breaklines,commandchars=\\\{\}}
\floatplacement{table}{H}
\renewcommand{\thesection}{\arabic{section}}
\AtBeginDocument{
\thispagestyle{empty}
\begin{tikzpicture}[remember picture,overlay]
\node at (current page.center) [yshift=4cm] [anchor=north,yshift=0cm] {\Huge\textbf{Ruminant Feed Balance Modelling in R}};
\node at (current page.south) [yshift=8cm] [anchor=north,yshift=0cm] {\normalsize\textbf{January 2025}};
\node at (current page.south) [yshift=3cm] [anchor=south,yshift=-1cm] {\includegraphics[width=18cm]{img/logos.png}};
\end{tikzpicture}
\clearpage}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(tidy = TRUE, width = 90)
```
\newpage
# Introduction
This course is designed to guide learners on ruminant feed balance modelling in R. The course gives an overview of the concept of feed balance modelling, and introduces the main modelling steps based by \citet{fravalFeedBalancesRuminant2024}. Learners are taught how to gather spatial and non-spatial data, pre-process it, and ultimately assess feed balances. The methodology has be implemented in Ethiopia, Burkina Faso and Nigeria. The codes and data in these course are for Nigeria. The course emphasizes practical learning, with learners working on hands-on sessions. Detailed explanations are provided, helping learners follow along with the material and providing a valuable resource for future reference.
\newpage
# Background
Feed balances are used to evaluate the adequacy of available livestock feed resources in meeting the dietary requirements of livestock \citep{mottetFeedBalancesSheet2024}. Feed resources typically include natural grasses, browse, crop by-products (e.g., crop residues), and agro-industrial by-products. Feed balance assessments are conducted at specific geographical scales and over defined time periods. In this course, we focus on estimating feed (energy) balance for ruminant livestock at the national scale, while ensuring relevance at sub-national levels and across different time frames.
## Objectives
The objectives of this course are to:-
- Teach participants where to collect spatial and non-spatial data required for livestock feed balance assessment for Nigeria.
- Teach participants how to import, edit, and export spatial and non-spatial data in preparation for feed balance modeling.
- Guide participants in evaluating livestock feed supply and determining livestock nutritional requirements.
- Equip participants with the skills to assess feed balances, allowing them to evaluate if livestock feed supply meets demand.
## Learning Outcomes
By the end of the course, learners will be able to:-
- Locate and collect essential spatial and non-spatial data for livestock feed balance assessment for Nigeria
- Import, edit, and export spatial and non-spatial data for use in livestock feed balance assessments.
- Assess livestock feed supply and determine livestock nutritional requirements.
- Evaluate feed supply against livestock requirements to assess feed balances.
## Approach
The approach involves estimating (i) feed availability using freely accessible geospatial data and (ii) ruminant livestock feed requirements, both assessed over time. @fig-FeedBal_model provides an overview of the feed balance model design.
{#fig-FeedBal_model fig-pos="H"}
The course is organized into three workflows: `1Data-download` for downloading data, `2Feed-geoprocessing` for estimating feed availability and `3Balance-estimates` for estimating feed balances.
\newpage
# Setting up R environment
Learners will need to install the following free and open source software:-
- R programming language (4.4+) <https://cran.r-project.org>.
- R Studio Desktop (3.6+) <https://rstudio.com/products/rstudio/download/#download>.
Create a new folder within your work space and name it `feed-balance-modelling`. Using R, we assign the path to the folder the variable name `root`.
```{r include = FALSE}
root <- "/home/s2255815/rdrive/AU_IBAR/ruminant-feed-balance"
```
For Linux/Unix systems
```{r eval=FALSE}
# Linux systems
root <- "/home/feed-balance-modelling"
```
For Windows systems
```{r eval=FALSE}
# Windows systems
root <- "C:/Documents/feed-balance-modelling"
```
Next, we set the country of interest.
```{r}
country <- "Nigeria"
```
\newpage
# Data collation
This tutorial aims to guide learners through the key spatial and non-spatial data sources required for assessing feed balance. Learners will be introduced to a variety of datasets, and by the end of the tutorial, they will understand the necessary data requirements and know how to gather these datasets for feed balance modeling.
The tutorial leverages freely available spatial and non-spatial data to perform feed balance modeling. Recent advancements in R packages have enabled streamlined access to spatial data, including administrative boundaries, climatic variables, and environmental datasets. The required data is listed in Table \ref{tbl:model-input-data}.
```{=tex}
\begin{landscape}
\begin{table}[h]
\caption{List of datasets required for feed balance modelling}
\label{tbl:model-input-data}
\centering
\begin{tabular}{p{3cm}p{7cm}p{2cm}p{2cm}p{2cm}p{3cm}}
\toprule
\textbf{Dataset} & \textbf{Description} & \textbf{Availability} & \textbf{Spatial resolution} & \textbf{Year} & \textbf{Source} \\
\midrule
Administrative boundaries & Administrative boundaries for target country & Global & NA & 2023 & \citet{gadmDatabaseGlobalAdministrative2024} \\
Aggregation zones & Areas with similar livestock management practices & Regional & NA & 2018 & \citet{fmardEcologicalFeedDistribution2023} \\
Land use & Fractional cover of different land uses & Global & 100 meter & 2019 & \citet{buchhornCopernicusGlobalLand2020a} \\
Above ground dry matter productivity & Vegetation's overall growth rate & Global & 300 meter & 2020-2023 & \citet{copernicusDryMatterProductivity2024} \\
Crop type and area & Location, extent, and patterns of feedable crops & Global & 10 kilometer & 2020 & \citet{ifpriGlobalSpatiallyDisaggregatedCrop2024} \\
Phenology & Seasonal pattern of variation in vegetated land surfaces observed from remote sensing & Global & 500 meter & 2020-2023 & \citet{grayUserGuideCollection2024} \\
Burned areas & Burnt scars & Global & 300 meter & 2020-2023 & \citet{padillaNearrealTimeMonitoring2024} \\
Protected areas & Marine and terrestrial protected areas & Global & NA & 2024 & \citet{unep-wcmcandiucnProtectedPlanetWorld2023} \\
Tree cover & Forest and non-forest tree cover & Global, Regional & 100 meter & 2019 & \citet{reinerMoreOneQuarter2023} \\
Crop harvest index & Ratio of harvested product dry weight to total above-ground biomass dry weight at plant maturity & Local & NA & 2024 & \citet{ilriFeedAssessmentTool2022} \\
Feed parameters & Nutritional quality of feed items/type e.g., dry matter digestibility, crude protein & Local & NA & 2024 & \citet{ilriSubSaharanAfricaFeeds2020} \\
Livestock population & Type and number of livestock & Global & 10 kilometer & 2020 & \citet{gilbertGlobalDistributionData2018} \\
Livestock parameters & Animal characteristics e.g., live weight, age & Local & NA & 2024 & Experts \\
\bottomrule
\end{tabular}
\end{table}
\end{landscape}
```
We provide brief reproducible examples illustrating how to download and prepare such data for feed balance modeling.
## Administrative boundaries
We create a new folder under `feed-balance-modelling`, and name it `AdminBound` and assign it the variable name `outdir`. We can download administrative boundaries of world countries with the `geodata` R package. Here we use `geodata` to download the administrative boundaries for levels `0`, `1` and `2` for Nigeria from `Database of Global Administrative Areas` \citep{gadmDatabaseGlobalAdministrative2024}, and store the data in `AdminBound` folder.
```{r eval=FALSE, message=FALSE, warning=FALSE}
library(geodata)
library(sf)
country <- "Nigeria"
outdir <- paste0(root, "/src/1Data-download/SpatialData/inputs/AdminBound/", country); dir.create(outdir, F, T)
admin_levels <- c("0", "1", "2")
for(admin_level in admin_levels){
aoi <- geodata::gadm(country = "NGA", level=admin_level, path = paste0(outdir), version="latest") %>% sf::st_as_sf()
write_sf(aoi, paste0(outdir, "/gadm40_NGA_", admin_level, ".shp"), append = FALSE)
write_sf(aoi, paste0(outdir, "/aoi", admin_level, ".shp"), append = FALSE)
}
```
## Aggregation zones
We use ecological and feed distribution zones as defined by \citet{fmardEcologialFeedDistribution2024}, the most recent version can be downloaded at <https://drive.google.com/file/d/10HsGspftDNgq-fjAjeUwB8QsmHZWUJyT/view?usp=sharing>.
```{r message=FALSE, warning=FALSE}
library(googledrive)
outdir <- paste0(root, "/src/1Data-download/SpatialData/inputs/AggregationZones"); dir.create(outdir, F, T)
drive_deauth()
drive_user()
public_file <- drive_get(as_id("10HsGspftDNgq-fjAjeUwB8QsmHZWUJyT"))
drive_download(public_file, path = paste0(outdir, "/Ecological_and_Feed_Distribution.zip"), overwrite = TRUE)
unzip(zipfile = paste0(outdir, "/Ecological_and_Feed_Distribution.zip"), exdir = paste0(outdir, "/"))
```
## Feed parameters
Several feed parameters are needed for model parameterization. In this course, we estimate the metabolizable energy (ME) concentration of feeds using species-specific estimates derived from literature reviews and databases such as the Sub-Saharan Africa Feeds composition Database (Link: <https://feedsdatabase.ilri.org>. Feed quality parameters include metabolizable Energy (ME), neutral detergent fibre (NDF), in vitro organic matter digestibility (IVOMD), and crude protein (CP). To facilitate model parameterization, a comprehensive feed parameter file has been prepared and is available for download at: <https://drive.google.com/drive/folders/1SpB1p9i4MGU1gMahF4M3Uc-HZr8FGoqd>
```{r eval=FALSE}
outdir <- paste0(root, "/src/1Data-download/Tables/inputs/", country, "/CropParams"); dir.create(outdir, F, T)
drive_deauth()
drive_user()
#folder link to id
public_folder <- "https://drive.google.com/drive/folders/1SpB1p9i4MGU1gMahF4M3Uc-HZr8FGoqd"
folder_id <- drive_get(as_id(public_folder))
#find files in folder
public_files <- drive_ls(folder_id)
for(i in 1:nrow(public_files)){
public_file <- public_files[i, ]
file_name <- public_file$name
drive_download(public_file, path = paste0(outdir, "/", file_name), overwrite = TRUE)
}
```
Other useful websites for feed parameters include:
- Feedipedia <https://www.feedipedia.org>
- Tropical forages <http://www.tropicalforages.info>
## Livestock parameters
Several livestock parameters are needed for model parameterization. In this course, we utilize the Gridded Livestock of the World (GLW) database to spatially disaggregate herds and flocks into species and categories including sheep, goats (adult and young), cattle (bulls, steers, cows, heifers, and calves), horses, and donkeys. We compile essential livestock parameters to characterize herd dynamics and productivity. These parameters include: live weight, age, daily weight gain, fertility rate, lactation length, daily milk yield, annual milk yield, daily walking distance, and proportion of population used for work. To facilitate model parameterization, a comprehensive feed parameter file has been prepared and is available for download at: <https://drive.google.com/drive/folders/1-3N_kmMgcHr_tayylSxlMJAr-2PBGFXd>
```{r eval=FALSE}
outdir <- paste0(root, "/src/1Data-download/Tables/inputs/", country, "/LivestockParams"); dir.create(outdir, F, T)
drive_deauth()
drive_user()
#folder link to id
public_folder = "https://drive.google.com/drive/folders/1-3N_kmMgcHr_tayylSxlMJAr-2PBGFXd"
folder_id = drive_get(as_id(public_folder))
#find files in folder
public_files = drive_ls(folder_id)
for(i in 1:nrow(public_files)){
public_file <- public_files[i, ]
file_name <- public_file$name
drive_download(public_file, path = paste0(outdir, "/", file_name), overwrite = TRUE)
}
```
Extended workflows and detailed scripts for collating other required datasets are available at <https://github.com/ilri/ruminant-feed-balance/tree/main/src/1Data-download>
# Feed geoprocessing
This tutorial aims to guide learners through the geo-processiong techniques used for making the datasets we collated in the previous session ready for feed balance modelling. The workflow is comprised of R scripts that should be executed in numeric-alphabetic sequence i.e., 0a, 0b, 1, 2a, 2b etc.
Here we provide brief reproducible examples illustrating execute some of the R scripts.
## Cropping rasters
The spatial datasets downloaded in the previous session included both vector and raster data. For example `dry matter productivity` herein referred to as `DMP` layers have a global extent, `aggregation zones` are at a national extent, the `tree cover` data is at a regional extent, and the `protected areas` data is provided as a vector layer.
To focus our analysis on the area of interest, we will crop the layers from their global or regional extents to a smaller extent. We will use the boundary of Nigeria as the cropping extent to refine the datasets for the analysis.
### Dry Matter Productivity
We begin by processing the `Dry Matter Productivity` layers. We create an outputs folder `outdir` to store the clipped files. We then read in the Nigeria boundary layer `aoi` to define the area of interest. Next, we list all `NetCDF` files downloaded in the previous session. We iterate through the files, cropping each to the specified area of interest, and save the resulting clipped files in the `outdir` folder.
```{r eval=FALSE}
# Load required packages
library(dplyr)
library(raster)
library(rgdal)
library(sf)
# output folder
outdir <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/DMP"); dir.create(outdir, F, T)
# read AOI
aoi <- read_sf(paste0(root, "/src/1Data-download/SpatialData/inputs/AdminBound/", country, "/aoi0.shp"))
nc_files <- list.files("/src/1Data-download/SpatialData/inputs/Feed/DMP", pattern = ".nc$", full.names = TRUE, recursive = TRUE)
for (nc_file in nc_files){
nc_name <- gsub('.{3}$', '', basename(nc_file))
iDMP <- raster::raster(nc_file, varname="DMP", ncdf=TRUE)
iDMP <- crop(iDMP, extent(aoi))
iDMP <- mask(iDMP, aoi)
# save as GeoTIFF
raster::writeRaster(iDMP, filename = paste0(outdir, "/", nc_name, ".tif"), overwrite=TRUE)
}
```
### Protected areas
As mentioned earlier, the `protected areas` layer is provided as a vector layer and will be converted into a raster format. A reference layer from the `DMP` layer collection is used for clipping and resampling during this process.
```{r eval=FALSE}
#Libraries
library(terra)
indir <- paste0(root, "/src/1Data-download/SpatialData/inputs/ProtectedAreas")
outdir <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/ProtectedAreas"); dir.create(outdir, F, T)
# load livelihoods vectors
wdpaNGA <- vect(paste0(indir, "/WDPA_WDOECM_Oct2024_Public_NGA.shp"))
# reference raster?
#r <- rast(ext(wdpaNGA), resolution = 0.00297619, crs = crs(wdpaNGA))
dmpTemp <- rast(paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/DMP/c_gls_DMP300-RT6_202301100000_GLOBE_OLCI_V1.1.2.tif"))
# rasterize the SpatVector
wdpaNGA <- rasterize(wdpaNGA, dmpTemp, field = "STATUS_YR")
# Write output
writeRaster(wdpaNGA, paste0(outdir, "/WDPAGlobal.tif"), overwrite=TRUE)
```
### Crop digestible fraction
We derive `crop digestible` fraction layers by calculating feedable versus non-feedable crops on using the `crop type and distribution` layers.
```{r eval=FALSE}
# Load libraries
library(terra)
library(dplyr)
library(readr)
#Runs with 16gb ram and 40+gb hdd space
terraOptions(tempdir = "/home/scratch/AUTemp")
terraOptions(memfrac=0.5)
terraOptions(todisk=TRUE)
pathLU <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/LandUse")
filesLU <- list.files(path = pathLU, pattern = ".tif$", full.names = T)
pathSPAM <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020")
pathSPAMInter <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020/intermediate"); dir.create(pathSPAMInter, F, T)
#end of file name should be physical area_cropname_a
filesSPAM <- list.files(path = pathSPAM, pattern = "_a.tif$", full.names = T)
#stSPAM <- stack(filesSPAM)
stSPAM <- rast(filesSPAM)
###Calculate non-feed crops proportion from SPAM model.
tmpNonFeed <- read_csv(paste0(root, "/src/1Data-download/Tables/inputs/CropParams/crop_harvest index.csv")) %>% filter(Excluded != "0") %>%
pull(codeSPAM) %>%
unique()
tmpNonFeedIndex <- grep(pattern = paste(tmpNonFeed, collapse = "|"), names(stSPAM))
iSPAMtotalArea <- app(stSPAM, fun = sum, na.rm=TRUE)
iSPAMnonFeedArea <- app(stSPAM[[tmpNonFeedIndex]], fun = sum, na.rm=TRUE)
iSPAMnonFeedFrac <- (iSPAMnonFeedArea / iSPAMtotalArea)
iSPAMnonFeedFrac <- classify(iSPAMnonFeedFrac, cbind(NA, NA, 0), right=FALSE) # Replace missing values with 0
iSPAMAnimalDigestCropFrac <- 1 - iSPAMnonFeedFrac
iSPAMAnimalDigestCropFrac <- writeRaster(iSPAMAnimalDigestCropFrac, paste0(pathSPAMInter, "/animal_digest_frac.tif"), overwrite = T)
```
### Crop residue fraction
We derive `crop residue` fraction layers by combining data on `crop type and distribution` with `harvest index` obtained from published sources.
```{r eval=FALSE}
# Load libraries
library(dplyr)
library(raster)
library(rgdal)
library(readr)
#Runs with 16gb ram and 40+gb hdd space
rasterOptions(tmpdir="/home/scratch/AUTemp")
rasterOptions(maxmemory = 1e+60)
rasterOptions(todisk = TRUE)
#setwd("/exports/eddie/scratch/sfraval/feed-surfaces/")
cropHI <- read_csv(paste0(root, "/src/1Data-download/Tables/inputs/CropParams/crop_harvest index.csv"))
pathSPAM <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020")
pathSPAMInter <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020/intermediate")
#end of file name should be physical area_cropname_a
filesSPAM <- list.files(path = pathSPAM, pattern = "_a.tif$", full.names = T)
stSPAM <- stack(filesSPAM)
gc()
crops <-sub(".*_a_(.*?)_a\\.tif$", "\\1", filesSPAM)
tmpCropIndex <- grep(pattern = paste(crops, collapse = "|"), names(stSPAM))
iSPAMcropArea <- calc(stack(stSPAM[[tmpCropIndex]]), fun = sum, na.rm = TRUE)
print("past 1")
stHI <- stack()
stSPAMcropProp <- stack()
gc()
for(i in 1: length(crops)){
tmpCropIndex <- grep(pattern = paste(crops[i], collapse = "|"), names(stSPAM))
iSPAMtmpArea <- overlay(stSPAM[[tmpCropIndex]], fun = sum, na.rm=TRUE)
icrop <- stSPAM[[tmpCropIndex]]
icrop[icrop >0] <- (1 - cropHI$harvest_index[cropHI$codeSPAM == crops[i]])
stHI <- stack(stHI, icrop)
stSPAMcropProp <- stack(stSPAMcropProp, overlay(iSPAMtmpArea, iSPAMcropArea, fun = function(x, y){(x/y)}))
print(paste("Loop", i))
}
gc()
iSPAMcropResFrac <- weighted.mean(stHI, stSPAMcropProp, na.rm = T)
iSPAMcropResFrac <- reclassify(iSPAMcropResFrac, cbind(NA, NA, 0.8), right=FALSE) #Assume that 80% is available for animals
print("past mean")
writeRaster(iSPAMcropResFrac, paste0(pathSPAMInter, "/crop_res_frac.tif"), overwrite = T)
```
We calculate the proportion of feed items i.e., cereals, roots, legumes, and oil crops using the `crop area and distribution` data. We write the new layers in the `SPAM2020` folder.
```{r eval=FALSE}
# Load libraries
library(terra)
library(readr)
terraOptions(tempdir = "/home/scratch/AUTemp")
terraOptions(memfrac=0.5)
terraOptions(todisk=TRUE)
spamPath <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020")
cropLookup <- read_csv(paste0(root, "/src/1Data-download/Tables/inputs/CropParams/Crop classification_feed basket.csv"))
filesSPAM <- list.files(path = spamPath, pattern = "_a.tif$", full.names = T)
stCrops <- rast(filesSPAM)
# Index major feed types
indexCere <- grep(pattern = paste(cropLookup$codeSPAM[cropLookup$codeBasket_grouped_NGA == "cere"], collapse = "|"), sub(".*_a_(.*?)_a\\.tif$", "\\1", filesSPAM))
indexRoots <- grep(pattern = paste(cropLookup$codeSPAM[cropLookup$codeBasket_grouped_NGA == "roots"], collapse = "|"), sub(".*_a_(.*?)_a\\.tif$", "\\1", filesSPAM))
indexLeg <- grep(pattern = paste(cropLookup$codeSPAM[cropLookup$codeBasket_grouped_NGA == "leg"], collapse = "|"), sub(".*_a_(.*?)_a\\.tif$", "\\1", filesSPAM))
indexOilc <- grep(pattern = paste(cropLookup$codeSPAM[cropLookup$codeBasket_grouped_NGA == "oilc"], collapse = "|"), sub(".*_a_(.*?)_a\\.tif$", "\\1", filesSPAM))
# Extraction area for major feed categories
areaTotal <- app(stCrops, fun = sum, na.rm = T)
areaCere <- app(stCrops[[indexCere]], fun = sum, na.rm = T)
areaRoots <- app(stCrops[[indexRoots]], fun = sum, na.rm = T)
areaLeg <- app(stCrops[[indexLeg]], fun = sum, na.rm = T)
areaOilc <- app(stCrops[[indexOilc]], fun = sum, na.rm = T)
# Calculate proportions
propCere <- areaCere / areaTotal
propRoots <- areaRoots / areaTotal
propLeg <- areaLeg / areaTotal
propOilc <- areaOilc / areaTotal
# Write outputs
writeRaster(propCere, paste0(spamPath, "/propCereSPAM.tif"), overwrite=TRUE)
writeRaster(propRoots, paste0(spamPath, "/propRootsSPAM.tif"), overwrite=TRUE)
writeRaster(propLeg, paste0(spamPath, "/propLegSPAM.tif"), overwrite=TRUE)
writeRaster(propOilc, paste0(spamPath, "/propOilcSPAM.tif"), overwrite=TRUE)
```
Additional workflows and detailed scripts for preparing other files are available at:
- Landuse <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/1bPrepareLanduse_clip.R>
- Tree cover <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/1cPrepareTreeCover_clip.R>
- Digital Earth Africa land use <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/1dPrepareDEALanduse_clip.R>
- Phenology <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/2aPreparePhenologyModis.R>
- Burned area <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/3aBurnedDaysclip.R>
- SPAM <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/4aSPAMclip.R>
- Livestock population <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/6prepareLivestockPopulation.R>
- Livestock production systems <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/7prepareLivestockSystems.R>
### Seasonal DM availability
We calculate the number of cropping days in a year by analyzing phenology data (e.g., green-up and senescence dates), over a time series `2020-2013`. We then define `wet` and `dry` periods. Next, we combine `crop residue`, `browse`, `natural grass` fractions, and `DMP` data to estimate feed availability for `dry` and `wet` season over the time series.
```{r eval=FALSE}
yearOffset <- (0*365) # Base year = 2020
# Load libraries
library(dplyr)
library(raster)
library(rgdal)
rasterOptions(tmpdir="/home/scratch/AUTemp")
rasterOptions(maxmemory = 5e+20) # 6e+10 ~51GB allowed
rasterOptions(todisk = TRUE)
# read AOI
aoi <- readOGR(paste0(root, "/src/1Data-download/SpatialData/inputs/AdminBound/", country, "/aoi0.shp"))
yearList <- c("2020", "2021", "2022", "2023")
lapply(yearList, function(year){
cropOutdir <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Cropping_days"); dir.create(cropOutdir, F, T)
FeedQuantityOutdir <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/Feed_quantity/", year); dir.create(FeedQuantityOutdir, F, T)
pathPhen <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/PhenologyModis/", year, "/outputTif")
filesPhenology <- list.files(path = pathPhen,pattern=".tif$", full.names = T)
pathDMP <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/DMP")
filesDMP <- list.files(path = pathDMP, pattern = paste0("RT6_", year, ".*\\.tif$"), full.names = TRUE)
stDMP <- stack(filesDMP)
datesDMP <- sub(".*RT6_(.{8}).*", "\\1", filesDMP)
datesDMP <- as.Date(datesDMP, "%Y%m%d")
datesDMPdiff <- as.numeric(datesDMP - as.Date("1970/01/01")) #convert to same date format as Modis phenology
pathLU <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/Feed_DrySeason/LandUse")
filesLU <- list.files(path = pathLU, pattern = "300.tif$", full.names = T)
pathSPAM <- paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020")
#end of file name should be physical area_cropname_a
filesSPAM <- list.files(path = pathSPAM, pattern = "_a.tif$", full.names = T)
iSPAMAnimalDigestCropFrac <- raster(paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020/animal_digest_frac.tif"))
rProtectedAreas <- stack(paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/ProtectedAreas/WDPAGlobal.tif"))
rNonProtectedAreas <- calc(rProtectedAreas, fun = function(x){ifelse(x == 0, 1, 0)})
rm(rProtectedAreas)
print("past protected")
stLU <- stack(filesLU)
LUcrops300DEA <- raster(paste0(pathLU, "/LUcrops300DEA.tif"))
stPhen <- stack(raster(grep("phenoGreenup1.tif", filesPhenology, value=TRUE)),
raster(grep("phenoSenescence1.tif", filesPhenology, value=TRUE)),
raster(grep("phenoGreenup2.tif", filesPhenology, value=TRUE)),
raster(grep("phenoSenescence2.tif", filesPhenology, value=TRUE)))
gc()
##Crop land use to test area
LUcrops300DEA <- extend(LUcrops300DEA, extent(stDMP[[1]]))
LUcrops300DEA <- crop(LUcrops300DEA, extent(stDMP[[1]]))
LUcrops300DEA <- mask(LUcrops300DEA, aoi)
stLU <- extend(stLU, extent(stDMP[[1]]))
stLU <- crop(stLU, extent(stDMP[[1]]))
stLU <- mask(stLU, aoi)
##Revise grass and shrub area
diffCrop <- LUcrops300DEA - stLU$LUcrops300
stLU$LUgrassShrub300 <- sum(stLU$LUgrass300, stLU$LUshrub300, na.rm = T)
stLU$LUgrassShrub300 <- stLU$LUgrassShrub300 - LUcrops300DEA
stLU$LUcrops300 <- LUcrops300DEA
stPhen$phenoGreenup2 <- calc(stPhen$phenoGreenup2, fun = function(x){ifelse(x > max(datesDMPdiff)+30, NA, x)})
stPhen$phenoSenescence2 <- calc(stPhen$phenoSenescence2, fun = function(x){ifelse(x > max(datesDMPdiff)+30, NA, x)})
stPhen$phenoGreenup1 <- calc(stPhen$phenoGreenup1, fun = function(x){ifelse(x < min(datesDMPdiff)-30, NA, x)})
stPhen$phenoSenescence1 <- calc(stPhen$phenoSenescence1, fun = function(x){ifelse(x < min(datesDMPdiff)-30, NA, x)})
gc()
growing2 <- (stPhen$phenoSenescence2 - stPhen$phenoGreenup2)
growing2 <- reclassify(growing2, c(365, Inf, 0))
growingDays <- sum((stPhen$phenoSenescence1 - stPhen$phenoGreenup1), growing2, na.rm = T)
growingDays <- reclassify(growingDays, c(300, Inf, 300))
gc()
writeRaster(growingDays, paste0(cropOutdir, "/croppingDays_", year, ".tif"), overwrite = T)
print("past 0")
names(stDMP) <- paste0("d", datesDMPdiff)
stLU$LUtree300 <- reclassify(stLU$LUtree300, c(-Inf, 0, 0, 200, Inf, 0))
stLU$LUtree300[is.na(stLU$LUtree300)] <- 0
print("past 1")
#####Estimate total DMP per ha
grassFracDry <- 1# 0.33 #max 0.55
grassFracWet <- 1# 0.55 #max 0.55
browseShrubFrac <- 1 #0.38 #max 0.38
browseForestFrac <- 1
iResidueUtil <- 1 #max 0.6
iSPAMHarvestResidueFrac <- raster(paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/SPAM2020/crop_res_frac.tif"))
gc()
print("past overlay 1")
residueFrac <- iSPAMHarvestResidueFrac
shrubFrac <- raster(paste0(root, "/src/2Feed-geoprocessing/SpatialData/inputs/", country, "/TreeCover/treecover300m.tif"))/100
gc()
funGrowingGrassWet <- function(dmp, crops, grassShrub, forest, shrubFrac, greenup, senesence, greenup2, senesence2, nonprotected) {ifelse((greenup <= datesDMPdiff[i] & senesence >= datesDMPdiff[i]) | (greenup2 <= datesDMPdiff[i] & senesence2 >= datesDMPdiff[i]), (dmp*9*grassShrub*grassFracWet*(1-shrubFrac))+(dmp*9*forest*grassFracWet*(1-shrubFrac)*nonprotected), NA) } #@feedFrac is the proportion of crops grown that have feedable residues - i.e. excluding coffee, tea, ect.
funGrowingGrassDry <- function(dmp, crops, grassShrub, forest, shrubFrac, greenup, senesence, greenup2, senesence2, nonprotected) {ifelse((greenup > datesDMPdiff[i]) | (senesence < datesDMPdiff[i] & senesence + 60 > datesDMPdiff[i]) | (senesence2 < datesDMPdiff[i]), (dmp*9*grassShrub*grassFracDry*(1-shrubFrac))+(dmp*9*forest*grassFracDry*(1-shrubFrac)*nonprotected), NA) } #@feedFrac is the proportion of crops grown that have feedable residues - i.e. excluding coffee, tea, ect.
funGrowingBrowse <- function(dmp, crops, grassShrub, forest, shrubFrac, nonprotected) {(dmp*9*grassShrub*shrubFrac*browseShrubFrac)+(dmp*9*forest*nonprotected*shrubFrac*browseForestFrac)}
funGrowingCrops <- function(dmp, crops, greenup, senesence, feedFrac, resFrac, greenup2, senesence2) {ifelse((greenup <= datesDMPdiff[i] & senesence >= datesDMPdiff[i]) | (greenup2 <= datesDMPdiff[i] & senesence2 >= datesDMPdiff[i]), (dmp*9*crops), NA) } #@feedFrac is the proportion of crops grown that have feedable residues - i.e. excluding coffee, tea, ect.
funGrowingAftermath <- function(dmp, crops, greenup, senesence, greenup2, senesence2, nonprotected) {ifelse((greenup > datesDMPdiff[i]) | (senesence < datesDMPdiff[i] & senesence + 60 > datesDMPdiff[i]) | (senesence2 < datesDMPdiff[i]), (dmp*9*crops), NA) } #@feedFrac is the proportion of crops grown that have feedable residues - i.e. excluding coffee, tea, ect.
for(i in 1:length(names(stDMP))){
iDMPGrassGrowing <- overlay(stDMP[[i]], stLU$LUcrops300, stLU$LUgrassShrub300, stLU$LUtree300, shrubFrac, stPhen$phenoGreenup1, stPhen$phenoSenescence1, stPhen$phenoGreenup2, stPhen$phenoSenescence2, rNonProtectedAreas, fun = funGrowingGrassWet)
writeRaster(iDMPGrassGrowing, paste0(FeedQuantityOutdir, "/grassWetDMP", datesDMP[i], ".tif"), overwrite = TRUE)
rm(iDMPGrassGrowing)
gc()
iDMPGrassDry <- overlay(stDMP[[i]], stLU$LUcrops300, stLU$LUgrassShrub300, stLU$LUtree300, shrubFrac, stPhen$phenoGreenup1, stPhen$phenoSenescence1, stPhen$phenoGreenup2, stPhen$phenoSenescence2, rNonProtectedAreas, fun = funGrowingGrassDry)
writeRaster(iDMPGrassDry, paste0(FeedQuantityOutdir, "/grassDryDMP", datesDMP[i], ".tif"), overwrite = TRUE)
rm(iDMPGrassDry)
gc()
iDMPBrowse <- overlay(stDMP[[i]], stLU$LUcrops300, stLU$LUgrassShrub300, stLU$LUtree300, shrubFrac, rNonProtectedAreas, fun = funGrowingBrowse)
writeRaster(iDMPBrowse, paste0(FeedQuantityOutdir, "/browseDMP", datesDMP[i], ".tif"), overwrite = TRUE)
rm(iDMPBrowse)
gc()
iDMPCropGrowing <- overlay(stDMP[[i]], stLU$LUcrops300, stPhen$phenoGreenup1, stPhen$phenoSenescence1, iSPAMAnimalDigestCropFrac, residueFrac, stPhen$phenoGreenup2, stPhen$phenoSenescence2, fun = funGrowingCrops)
writeRaster(iDMPCropGrowing, paste0(FeedQuantityOutdir, "/cropDMP", datesDMP[i], ".tif"), overwrite = TRUE)
rm(iDMPCropGrowing)
gc()
iDMPAftermath <- overlay(stDMP[[i]], stLU$LUcrops300, stPhen$phenoGreenup1, stPhen$phenoSenescence1, stPhen$phenoGreenup2, stPhen$phenoSenescence2, fun = funGrowingAftermath)
writeRaster(iDMPAftermath, paste0(FeedQuantityOutdir, "/aftermathDMP", datesDMP[i], ".tif"), overwrite = TRUE)
rm(iDMPAftermath)
gc()
print(paste("cycle", i))
}
gc()
iDMPgrassWet <- stack(list.files(path = paste0(FeedQuantityOutdir), pattern="grassWet",full.names = T))
DMPgrassmeanWet <- mean(iDMPgrassWet, na.rm = T)
writeRaster(DMPgrassmeanWet, paste0(FeedQuantityOutdir, "/DMPgrassWetmean_", year, ".tif"), overwrite = TRUE)
iDMPgrassDry <- stack(list.files(path = paste0(FeedQuantityOutdir), pattern="grassDry",full.names = T))
DMPgrassmeanDry <- mean(iDMPgrassDry, na.rm = T)
writeRaster(DMPgrassmeanDry, paste0(FeedQuantityOutdir, "/DMPgrassDrymean_", year, ".tif"), overwrite = TRUE)
iDMPbrowse <- stack(list.files(path = paste0(FeedQuantityOutdir), pattern="browse",full.names = T))
DMPbrowsemean <- mean(iDMPbrowse, na.rm = T)
writeRaster(DMPbrowsemean, paste0(FeedQuantityOutdir, "/DMPbrowsemean_", year, ".tif"), overwrite = TRUE)
iDMPCropGrowing <- stack(list.files(path = paste0(FeedQuantityOutdir), pattern="crop",full.names = T))
DMPcropmean <- mean(iDMPCropGrowing, na.rm = T)
writeRaster(DMPcropmean, paste0(FeedQuantityOutdir, "/DMPcropmean_", year, ".tif"), overwrite = TRUE)
iDMPAftermath <- stack(list.files(path = paste0(FeedQuantityOutdir), pattern="aftermath",full.names = T))
DMPAftermean <- mean(iDMPAftermath, na.rm = T)
writeRaster(DMPAftermean, paste0(FeedQuantityOutdir, "/DMPaftermean_", year, ".tif"), overwrite = TRUE)
gc()
})
```
Finally, we copy relevant data to specific folders for use in the next section using this R script: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/2Feed-geoprocessing/8Copydata.R>
# Estimating feed balances
## Mapping aggregation regions and zones
The ecological and feed distribution map provided by the Federal Ministry of Agriculture and Food Security (FMAFS) contain eight zones. We map them into ecological regions and zones as shown in Table \ref{tbl:ecological-zones}.
```{=tex}
\begin{table}[h]
\caption{Ecological zones and regions}
\label{tbl:ecological-zones}
\centering
\begin{tabular}{p{5cm}p{4cm}p{4cm}}
\toprule
\textbf{Ecological and Feed Distribution Zones} & \textbf{Ecological Regions} & \textbf{Ecological Zones} \\
\midrule
Sahel Savannah & Dry Savannah & (Agro)pastoral sahel \\
Sudan Savannah & Dry Savannah & Northern mixed \\
Southern Guinea Savannah & Wet Savannah & Southern mixed \\
Northern Guinea Savannah & Wet Savannah & Central mixed \\
Mountain Vegetations & Wet Savannah & Central mixed \\
Lowland Rainfall & Forest & Forest mixed \\
Fresh Water Swamp Forest & Forest & Forest mixed \\
Mangrove & Forest & Forest mixed \\
\bottomrule
\end{tabular}
\end{table}
```
The R script for creating the new categories of ecological regions and zones is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/0_PrepareRegions.R>
As shown in @fig-ecoregions, the ecological regions are classified into `Dry Savannah`, `Forest`, and `Wet Savannah`.
```{r echo=FALSE, warning=FALSE, message=FALSE, fig.cap="Ecological Regions of Nigeria", fig.pos="H"}
#| label: fig-ecoregions
library(sf)
library(ggplot2)
aoi_ECORegion <- read_sf("./src/3Balance-estimates/Nigeria/SpatialData/intermediate/regions.gpkg")
region_colors <- c("Dry Savannah" = "yellow", "Forest" = "darkgreen", "Wet Savannah" = "lightgreen")
ggplot() +
geom_sf(data = aoi_ECORegion, aes(fill = ECORegion)) +
scale_fill_manual(values = region_colors) +
coord_sf(xlim = c(2.1, 15.1), ylim = c(3.8, 14.3), expand = FALSE) +
labs(fill = "Ecological zones", title = "")
```
Similarly, as shown in @fig-ecozones, the ecological regions are further classified into `(Agro)pastoral sahel`, `Northern mixed`, `Central mixed`, `Southern mixed` and `Forest mixed`.
```{r echo=FALSE, warning=FALSE, message=FALSE, fig.cap="Ecological Zones of Nigeria", fig.pos="H"}
#| label: fig-ecozones
library(sf)
library(ggplot2)
aoi_ECOZones <- read_sf("./src/3Balance-estimates/Nigeria/SpatialData/intermediate/zones.gpkg")
zones_colors <- c("(Agro)pastoral sahel" = "yellow", "Northern mixed" = "yellow3", "Central mixed" = "green", "Southern mixed" = "lightgreen", "Forest mixed" = "darkgreen")
ggplot() +
geom_sf(data = aoi_ECOZones, aes(fill = ECOZone)) +
scale_fill_manual(values = zones_colors) +
coord_sf(xlim = c(2.1, 15.1), ylim = c(3.8, 14.3), expand = FALSE) +
labs(fill = "Ecological zones", title = "")
```
## Feed energy concentration
We merge `feedQuality` dataset with the `crop_classification` dataset using a common id, and map some specific feed items to new codes. The resulting clean `feedQuality` dataset is saved as a CSV file. The R script is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/0_ProcessSSAfeedDB.R>
We then calculate feed metabolizable energy (ME) by combining various datasets, including crop parameters, feed quality data, and spatial data related to crop type and distribution. We process feed quality data i.e., calculate dry matter intake (DMI), adjust for other variables like CP, NDF, and IVDMD. We generate summary statistics and group the data by crop type. NB: Missing or inconsistent data is addressed by imputing values or setting fixed values for certain crops (See Table \ref{tbl:feed-quality-data}).
```{=tex}
\begin{table}[H]
\caption{Feed quality for different feed items}
\label{tbl:feed-quality-data}
\centering
\begin{tabular}{p{3cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}p{1.5cm}}
\toprule
\textbf{Feed item} & \textbf{ME (SD)} & \textbf{ME (Min)} & \textbf{ME (Max)} & \textbf{ME (Mean)} & \textbf{CP} & \textbf{NDF} & \textbf{IVDMD} \\
\midrule
Banana* & 0.5 & 7.7 & 9.0 & 8.3 & 5.8 & 42.1 & 51.8 \\
Barley* & 0.8 & 5.8 & 10.3 & 7.3 & 8.0 & 68.6 & 47.7 \\
Bean* & 0.6 & 7.0 & 9.8 & 8.7 & 6.6 & 68.1 & 56.1 \\
Sugarbeet* & 1.4 & 7.0 & 13.4 & 9.9 & 19.8 & 39.1 & 67.9 \\
Chickpea* & 0.6 & 6.8 & 10.8 & 8.2 & 4.7 & 57.5 & 51.6 \\
Lentils* & 0.5 & 7.0 & 10.3 & 8.8 & 9.2 & 51.7 & 56.2 \\
Pigeon pea* & 0.4 & 7.6 & 9.1 & 8.2 & 16.2 & 53.0 & 53.5 \\
Plantain* & 0.5 & 7.7 & 9.0 & 8.3 & 5.8 & 42.1 & 51.8 \\
Soybean* & 0.6 & 7.0 & 10.9 & 8.6 & 7.7 & 66.6 & 57.0 \\
Sugarcane* & 0.3 & 7.2 & 8.0 & 7.5 & 6.9 & 73.8 & 49.4 \\
Wheat* & 1.2 & 5.7 & 11.0 & 7.3 & 4.3 & 72.1 & 48.7 \\
Cowpea* & NA & 7.7 & 10.5 & 9.3 & 12.2 & 46.8 & 61.0 \\
Maize* & NA & 7.9 & 7.9 & 7.9 & 5.2 & 69.1 & 51.8 \\
Pearl millet* & NA & 6.7 & 8.4 & 7.6 & 5.2 & 68.6 & 50.0 \\
Rice* & NA & 5.9 & 8.4 & 6.8 & 5.5 & 65.6 & 49.0 \\
Sesame* & NA & 9.2 & 9.5 & 9.3 & 19.3 & 24.2 & 59.1 \\
Sorghum* & NA & 6.6 & 7.9 & 7.5 & 4.5 & 71.9 & 48.5 \\
Sweet potato* & NA & 8.9 & 9.6 & 9.3 & 13.3 & 48.4 & 60.6 \\
Small millet & NA & 6.7 & 8.4 & 7.6 & 5.2 & 68.6 & NA \\
Other cereals* & NA & 6.7 & 8.4 & 7.6 & 5.2 & 68.6 & NA \\
Other legumes* & NA & 7.7 & 10.5 & 9.3 & 5.2 & 68.6 & NA \\
Cassava* & NA & 4.2 & 4.2 & 4.2 & NA & NA & NA \\
Yam* & NA & 4.2 & 4.2 & 4.2 & NA & NA & NA \\
Other roots and tubers* & NA & 4.2 & 4.2 & 4.2 & NA & NA & NA \\
Groundnut* & 1.6 & 7.2 & 9.3 & 8.5 & NA & NA & NA \\
Natural pasture & NA & 6.2 & 6.8 & 6.5 & NA & NA & NA \\
\bottomrule
\end{tabular}
\begin{tablenotes}
\item[*] \textit{* Denotes crop residue.}
\end{tablenotes}
\end{table}
```
We calculate crop-specific harvest index (See Table \ref{tbl:crop-harvest-index}), utilization and ME values. We then weight the values by the proportion of crop per pixel and aggregate the results to administrative level 2.
```{=tex}
\begin{table}[H]
\caption{Harvest index for feedable crops}
\label{tbl:crop-harvest-index}
\centering
\begin{tabular}{p{3cm}p{1.5cm}}
\toprule
\textbf{Crop name} & \textbf{Harvest index} \\
\midrule
Banana & 0.44 \\
Barley & 0.534 \\
Bean & 0.555 \\
Sugarbeet & 1 \\
Chickpea & 0.31 \\
Lentils & 0.246 \\
Pigeon Pea & 0.294 \\
Plantain & 0.44 \\
Soybean & 0.422 \\
Sugarcane & 0.19 \\
Wheat & 0.36575 \\
Cowpea & 0.335 \\
Maize & 0.3785 \\
Pearl millet & 0.188 \\
Rice & 0.4613 \\
Sesame & 0.01 \\
Sorghum & 0.458 \\
Sweet potato & 0.27 \\
Small Millet & 0.391 \\
Other cereals & 0.188 \\
Other legumes & 0.3 \\
Cassava & 0.8696 \\
Yam & 0.24102 \\
Other roots and tubers & 0.27 \\
Groundnut & 0.45 \\
\bottomrule
\end{tabular}
\end{table}
```
The R script for completing the above steps is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/0b_Prepare_cropME.R>
We analyse feed availability across multiple years (2020–2023) by integrating spatial data related to crop type and distribution, grass and browse productivity and feed utilization. Cropping days are calculated, with thresholds applied to exclude areas with insufficient cropping duration. Dry days are derived as the inverse of cropping days (365 - cropping days). Metabolizable energy (ME) is estimated for various feed sources including crop residues, grass, and browse, incorporating region-specific productivity and feed quality parameters. Feed statistics, such as mean ME values for crops, grass, and browse, are extracted and aggregated within defined regions and zones.
The R script for completing the above steps is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/1_ProcessFeedMEregional.R>, and <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/1b_ProcessFeedMEregional_min_max.R>
## Livestock energy requirements
### Requirements for base year
Using Gridded Livestock of the World (GLW) \citep{gilbertGlobalDistributionData2018}, livestock energy requirements are calculated by disaggregating herds and flocks into species and categories including `sheep`, `goats` (adult and young), `cattle` (bulls, steers, cows, heifers, and calves), `horses`, and `donkeys` and calculating seasonal metabolizable energy (ME) requirements for livestock, including energy requirements for `maintenance` , `locomotion`, `lactation` and `growth`, equations ([-@eq-maintenance]), ([-@eq-locomotion]), ([-@eq-lactation]), ([-@eq-growth-positive]) and ([-@eq-growth-negative]).
$$
\text{MERM}_{i,j,k} = K \times S \times M \times \frac{(0.26 \times \text{MLW}_k^{0.75}) \times \exp^{(-0.008 \times A_k)}}{(0.02 \times \text{ME}_{i,j}) + 0.5}
$$ {#eq-maintenance}
Where, \textit{MERM} is the maintenance energy requirement in megajoules per day (MJ/day) of animal \textit{k}, region \textit{i} and season \textit{j}, \textit{K} is a metabolic weight coefficient (1.3, an intermediate value for Bos taurus and Bos indicus cattle breeds), \textit{S} a constant for females and castrated cattle (1), \textit{M} a constant for presence or absence of milk in the diet, \textit{MLW} is the mean live weight of animal \textit{k} in region \textit{i} in season \textit{j}, and \textit{A} is the age of animal \textit{k} in region \textit{i} in season \textit{j} and \textit{ME} is metabolizable energy content of the diet in megajoules of metabolizable energy per kilogram of dry matter (MJ ME/kg DM) in region \textit{i} and season \textit{j}.
$$
\text{MERT}_{i,j,k} = \text{WD}_{i,j,k} \times \text{MLW}_{i,j,k} \times 0.0026
$$ {#eq-locomotion}
Where, \textit{MERT} is the locomotion energy requirement in megajoules per day (MJ/day) of animal \textit{k}, region \textit{i} and season \textit{j}, \textit{WD} is distance travelled by animal \textit{k} per day in kilometres in region \textit{i} and season \textit{j}, \textit{MLW} is the mean live weight of animal \textit{k} in region \textit{i} in season \textit{j}.
For adult cows, goats and sheep:
$$
\text{MERL}_{i,j,k} = \frac{\text{DMY}_{i,j,k} \times \text{ECM}_{i,j,k}}{\left(0.02 \times \text{ME}_{i,j}\right) + 0.04}
$$ {#eq-lactation}
Where, \textit{MERL} is the energy requirement for lactation for animal \textit{k}, in MJ/day in region \textit{i} and season \textit{j}, \textit{DMY} is the daily milk production for animal \textit{k} in kilogram in region \textit{i} and season \textit{j}, \textit{ECM} is the energy content of milk from animal \textit{k} in region \textit{i} and season \textit{j} and \textit{ME} is metabolizable energy content of the diet in megajoules of metabolizable energy per kilogram of dry matter (MJ ME/kg DM) in region \textit{i} and season \textit{j}.
Energy expended for weight gain or loss as per equations ([-@eq-growth-positive]) and ([-@eq-growth-negative]).
$$
\text{MERG+}_{i,j,k} = \frac{\text{DWG}_{i,j,k} \times 0.92 \times \text{EC}_{i,j,k}}{0.043 \times \text{ME}_{i,j}}
$$ {#eq-growth-positive}
If energy is lost:-
$$
\text{MERG-}_{i,j,k} = \frac{\text{DWG}_{i,j,k} \times 0.92}{0.8}
$$ {#eq-growth-negative}
Where, \textit{MERG+/-} is the energy expended for live weight gain/loss for animal \textit{k}, in MJ/day in region \textit{i} and season \textit{j}, \textit{DWG} is the average daily weight gain or loss for animal \textit{k} in kilograms in region \textit{i} and season \textit{j}, EC is an assumed energy content of tissue taken of 18 MJ/kg \citep{csiroNutrientRequirementsDomesticated2007} and \textit{ME} is metabolizable energy content of the diet in megajoules of metabolizable energy per kilogram of dry matter (MJ ME/kg DM) in region \textit{i} and season \textit{j}.
Finally, total energy requirements for the base year for each livestock category, season and region are calculated. The R script for completing the above steps is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/2_Lvst_requirements.R>, and <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/2b_Lvst_requirements_min_max.R>
### Estimating feed balances
We sum livestock energy requirements for cattle, shoats (sheep/goats), and horses/donkeys and adjust the requirements by incorporating population changes from FAOSTAT data, equation ([-@eq-energy-requirements-species]).
$$
\text{LvstME}_y = \sum \left( H_y + \left( C_y \times (1 + \Delta P_C) \right) + \left( S_y \times (1 + \Delta P_S) \right) \right)
$$ {#eq-energy-requirements-species}
Where, \textit{LvstME} is the total energy requirement for all livestock in year \textit{y}, \textit{H} is the energy requirement for horses and donkeys in MJ in year \textit{y}, \textit{C} is the energy requirement for cattle in MJ in year \textit{y}, \textit{S} is the energy requirement for shoats in MJ in year \textit{y}, \textit{\(\Delta {P}_C\)} is the annual percentage change in cattle population and \textit{\(\Delta {P}_S\)} is the annual percentage change in shoats population.
We combine feed availability data into a single dataset for annual analysis, equation ([-@eq-energy-feed]).
$$
\text{FeedME}_y = \sum_{y=2020}^{2023} \text{MEF}_{y}
$$ {#eq-energy-feed}
Where, \textit{FeedME} is the total energy from feeds for year \textit{y}, \textit{MEF} is the energy from feeds for year \textit{y}.
We aggregate and extract feed energy concentration and livestock energy requirements data across three spatial zones: `country`, `region`, and `state`across the time series. The zones were defined by spatial data representing Nigeria’s administrative boundaries and ecological zones. Finally we calculate feed balance for each spatial zone and year as the ratio of feed energy concentration to livestock energy requirements, equation ([-@eq-feed-balance]).
$$
\text{FeedBal}_{y,i} = \frac{\text{FeedME}_{y,i}}{\text{LvstME}_{y,i}}
$$ {#eq-feed-balance}
Where, \textit{FeedBal} is the feed balance for year \textit{y} in region \textit{i}, \textit{FeedME} is the feed energy concentration for year \textit{y} in region \textit{i} and \textit{LvstME} is the livestock energy requirement for year \textit{y} in region \textit{i}.
The R script for completing the above steps is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/3_ProcessTimeseriesRegionalAdeqTotals.R>, and <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/3b_ProcessTimeseriesRegionalAdeqTotals_min_max.R>
### Visualising results
The total biomass available as animal feed in Nigeria was `294.08` million tonnes (Mt) of DM, averaging `2.21` tonnes DM per hectare in the dry savannah, `3.73` tonnes DM per hectare in the forest region and `3.83` tonnes DM per hectare in the wet savannah.
In the dry savannah, grass contributed `28.17%` of the total metabolizable energy (ME), with crop residue, browse, and biomass from postharvest growth contributing `46.67%`, `0.40%`, and `24.76%`, respectively. In the forest zone, grass accounted for `45.22%`, while with crop residue, browse, and biomass from postharvest growth contributing `7.95%`, `42.41%` and `4.42%`. In the wet savannah, grass provided `40.94%` of the total ME, crop residue contributed `32.80%` and `9.05%`, and biomass from postharvest growth `17.21%` (@fig-Total_ME).
{#fig-Total_ME fig-pos="H"}
The adequacy of locally available metabolisable energy for ruminant livestock was most constrained in the (Agro)pastoral sahel (68% of requirements locally available) (@fig-Requirements_me).
{#fig-Requirements_me fig-pos="H"}
The R script for producing the above visualization and more is available at: <https://github.com/ilri/ruminant-feed-balance/blob/main/src/3Balance-estimates/Nigeria/4_MapAdequacy.R>
\newpage
# References
::: {#refs}
:::