This repository has been archived by the owner on Jun 30, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAW_siteanalysis.m
473 lines (406 loc) · 23.7 KB
/
AW_siteanalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Topographic Analysis - HW7
% Sam Mark, Arielle Woods, Julio Caineta
% Analysis of infrastructure damage
%
% Sections start with meaningful keywords:
% RUN: section is required to be run
% FIG: section only used to make some plot
% DEBUG: section used for debugging purposes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% RUN: load data
% topographic metrics
DEM = GRIDobj('resources/DEM30_gauss_filled.tif');
drainage_area = GRIDobj('resources/drainage_area_mdf.tif');
drainage_density = GRIDobj('resources/drainage_density_fixed.tif');
drainage_density_f = GRIDobj('resources/drainage_density_filtered.tif');
slope = GRIDobj('resources/slope_gauss.tif');
wetness_index = GRIDobj('resources/wetness_index.tif');
% non-topographic metrics
housing_age = GRIDobj('resources/agehouses_tmp3.tif');
canopy = GRIDobj('resources/canopyclipped.tif');
impervious = GRIDobj('resources/impervious_final.tif');
soil = GRIDobj('resources/soils_13.tif');
%%
% fix impervious map
impervious.refmat = DEM.refmat;
impervious.cellsize = DEM.cellsize;
% fix age of housing
housing_age.Z(housing_age.Z < 1755) = NaN;
housing_age.refmat = DEM.refmat;
housing_age.cellsize = DEM.cellsize;
% path to filtered files
% (DEM_avg, 'resources/DEM_filtered.tif')
% (drainage_area_avg, 'resources/drainage_area_mdf_filtered.tif')
% (slope_avg, 'resources/slope_filtered.tif')
% (wetness_index_avg, 'resources/wetness_index_filtered.tif')
% (drainage_density_avg, 'resources/drainage_density_filtered.tif')
% (housing_age_avg, 'resources/housing_age_filtered.tif')
% (impervious_avg, 'resources/impervious_filtered.tif')
% (soil_avg, 'resources/soil_filtered.tif')
% (canopy_avg, 'resources/canopy_filtered.tif'
%% load damage data
damage_fn = 'TopoDataAnalysis_AW.csv';
opts = detectImportOptions(damage_fn);
damage = readtable(damage_fn, opts);
% rename columns
damage.Properties.VariableNames{'DamagedStructure_1_sidewalk_2_road_3_fence_4_house_wall_5'} = 'DamagedStructure';
damage.Properties.VariableNames{'MagnitudeOfDamage'} = 'DamageMagnitude';
damage.Properties.VariableNames{'MaterialType_1_concrete_2_brick_3_asphalt_4_stone_5_wood_'} = 'MaterialType';
%% ignore DA sites for now; they have issues with the coordinates
DAs = strcmp(damage.SiteType, 'DA_L') + strcmp(damage.SiteType, 'DA_H');
damage = damage(~DAs, :);
%% get topographic metric values from maps
damage.DrainageDensity = geotiffinterp('resources/drainage_density_fixed.tif', damage.Lat, damage.Long);
damage.DrainageArea = geotiffinterp('resources/drainage_area_mdf.tif', damage.Lat, damage.Long);
[damage.Slope, x, y] = geotiffinterp('resources/slope_gauss.tif', damage.Lat, damage.Long);
damage.WetnessIndex = geotiffinterp('resources/wetness_index.tif', damage.Lat, damage.Long);
%% PLOT: sample sites over DEM
imagesc(DEM)
hold on
%plot(x, y, 'r*')
gscatter(x, y, damage.SiteType, 'mgrbcy', '+', 8, 'on')
%legend('DD High', 'DD Low', 'Slope High', 'Slope Low', ...
%'Location', 'northwestoutside')
hold off
%% Frequency table: Site type
tabulate(damage.SiteType)
%% Frequency table: Magnitude of damage
tabulate(damage.DamageMagnitude)
%% Frequency table: Damaged infrastructure
tabulate(damage.DamagedStructure)
%% Frequency table: Material
tabulate(damage.MaterialType)
%% Contigency table: Site type vs Magnitude of damage
[tbl, chi2, p, labels] = crosstab(damage.SiteType, damage.DamageMagnitude)
%% Contigency table: Site type vs Damaged infrastructure
[tbl, chi2, p, labels] = crosstab(damage.SiteType, damage.DamagedStructure)
%% Group stats: Damaged structure and magnitude per site
% grpstats requires the Statistics and Machine Learning Toolbox
grpstats(damage, 'SiteType', {'min', 'max', 'mean', @mode}, 'DataVars', ...
{'DamagedStructure', 'DamageMagnitude'})
%% Regional slope vs damage direction
rs_dir = damage.RegionalSlopeDirection_Az_;
rs_deg = damage.RegionalSlopeMagnitude_degreesFromHorizontal_;
dmg_dir = damage.DamageMetricsOrientation_Az_;
tilt = damage.DamageMetricsTilt_degreeFromVertical_;
% select the points where the regional slope and the damage direction are more
% than 20 degrees apart
pick = find(abs(rs_dir - dmg_dir) > 20);
% same but select only points where some tilt was measured
tilted = find(abs(rs_dir - dmg_dir) > 20 & tilt > 0);
t = table(rs_dir(tilted), dmg_dir(tilted), rs_deg(tilted), tilt(tilted), ...
'RowNames', damage.SiteID(tilted), ...
'VariableNames', {'RS_dir', 'Tilt_dir', 'RS_deg', 'Tilt_deg'})
%% load damage data *** Julio this is where I started using my version of the topo spreadsheet, and diverged from your siteanalysis.m file
damage_fn = 'TopoDataAnalysis_AW.csv';
%opts = detectImportOptions(damage_fn);
damage = readtable(damage_fn);
% rename columns
%damage.Properties.VariableNames{'DamagedStructure_1_sidewalk_2_road_3_fence_4_house_wall_5_'} = 'DamagedStructure';
%damage.Properties.VariableNames{'MagnitudeOfDamage'} = 'DamageMagnitude';
%damage.Properties.VariableNames{'MaterialType_1_concrete_2_brick_3_asphalt_4_stone_5_wood_'} = 'MaterialType';
%damage.Properties.VariableNames{'DrainageArea'} = 'DrainageArea';
%damage.Properties.VariableNames{'DrainageDensity'} = 'DrainageDensity';
%damage.Properties.VariableNames{'Slope'} = 'Slope';
%% calculating correlation coefficients for DD
DDL = damage(strcmp(damage.SiteType, {'DD_L'}), :);
DDL_R = corrcoef(DDL.MagnitudeOfDamage,DDL.DrainageArea);
DDH = damage(strcmp(damage.SiteType, {'DD_H'}), :);
DDH_R = corrcoef(DDH.MagnitudeOfDamage,DDH.DrainageArea);
DDLcorr2 = corr2(DDL.MagnitudeOfDamage,DDL.DrainageArea); % -0.0429
DDHcorr2 = corr2(DDH.MagnitudeOfDamage,DDH.DrainageArea); % -0.3606
DD = damage(strcmp(damage.SiteType, {'DD_H'}) | strcmp(damage.SiteType, {'DD_L'}), :);
DDcorr2 = corr2(DD.MagnitudeOfDamage,DD.DrainageArea); % 0.2341
%% corr coeffs for DA
DAL = damage(54:73,:);
DAH = damage(73:103,:);
DA = damage(54:103,:);
DALc2 = corr2(DAL.DamageMagnitude,DAL.DrainageArea); % 0.2641
DAHc2 = corr2(DAH.DamageMagnitude,DAH.DrainageArea); % -0.1125
DAc2 = corr2(DA.DamageMagnitude,DA.DrainageArea); % 0.1193
DALc2_slope = corr2(DAL.DamageMagnitude,DAL.Slope); % 0.4354
DAHc2_slope = corr2(DAH.DamageMagnitude,DAH.Slope); % -0.0407
DAc2_slope = corr2(DA.DamageMagnitude,DA.Slope); % 0.2843
%DALc2_dd = corr2(DAL.DamageMagnitude,DAL.DrainageDensity) %
%DAHc2_dd = corr2(DAH.DamageMagnitude,DAH.DrainageDensity) %
%DAc2_dd = corr2(DA.DamageMagnitude,DA.DrainageDensity) %
DALc2_imp = corr2(DAL.DamageMagnitude,DAL.ImperviousCover); % -0.2310
DAHc2_imp = corr2(DAH.DamageMagnitude,DAH.ImperviousCover); % 0.2789
DAc2_imp = corr2(DA.DamageMagnitude,DA.ImperviousCover); % 0.3774
DALc2_WI = corr2(DAL.DamageMagnitude,DAL.WetnessIndex); % 0.2240
DAHc2_WI = corr2(DAH.DamageMagnitude,DAH.WetnessIndex); % -0.0309
DAc2_WI = corr2(DA.DamageMagnitude,DA.WetnessIndex); % 0.2091
%% more corr coeffs
DALc2_DD = corr2(DAL.MagnitudeOfDamage,DAL.DrainageDensity)
DAHc2_DD = corr2(DAH.MagnitudeOfDamage,DAH.DrainageDensity)
DAc2_DD = corr2(DA.MagnitudeOfDamage,DA.DrainageDensity)
%% filter rows of topo damage table by site type
dalRows = damage(strcmp(damage.SiteType, {'DA_L'}), :);
dahRows = damage(strcmp(damage.SiteType, {'DA_H'}), :);
daRows = damage(strcmp(damage.SiteType, {'DA_H'}) | strcmp(damage.SiteType, {'DA_L'}), :);
ddlRows = damage(strcmp(damage.SiteType, {'DD_L'}), :);
ddhRows = damage(strcmp(damage.SiteType, {'DD_H'}), :);
ddRows = damage(strcmp(damage.SiteType, {'DD_H'}) | strcmp(damage.SiteType, {'DD_L'}), :);
slRows = damage(strcmp(damage.SiteType, {'S_L'}), :);
shRows = damage(strcmp(damage.SiteType, {'S_H'}), :);
sRows = damage(strcmp(damage.SiteType, {'S_H'}) | strcmp(damage.SiteType, {'S_L'}), :);
slinf = slRows(1:28,:);
%sinf = sRows(1:43,:) | sRows(55:84,:)
sRows_noinf = damage(damage.WetnessIndex < Inf & strcmp(damage.SiteType, {'S_L'}) | strcmp(damage.SiteType, {'S_H'}), :);
% filter out NaNs for age of housing data
dah_nan = damage(~isnan(damage.AgeHousing) & strcmp(damage.SiteType, {'DA_H'}), :);
ddl_nan = damage(~isnan(damage.AgeHousing) & strcmp(damage.SiteType, {'DD_L'}), :);
sl_nan = damage(~isnan(damage.AgeHousing) & strcmp(damage.SiteType, {'S_L'}), :);
sh_nan = damage(~isnan(damage.AgeHousing) & strcmp(damage.SiteType, {'S_H'}), :);
%s_nan = damage(~isnan(damage.AgeHousing & strcmp(damage.SiteType, {'S_L'}) | strcmp(damage.SiteType, {'S_H'}), :))
s_nan = vertcat(sl_nan,sh_nan);
ddh_nan = damage(~isnan(damage.DrainageDensity) & strcmp(damage.SiteType, {'DD_H'}), :);
%% for DA group damage only, plot magnitude of damage against the interpolated value for each topo metric
subplot(1,4,1), gscatter(daRows.MagnitudeOfDamage, daRows.DrainageArea, daRows.SiteType), axis square
subplot(1,4,2), gscatter(daRows.MagnitudeOfDamage, daRows.Slope, daRows.SiteType), axis square
subplot(1,4,3), gscatter(daRows.MagnitudeOfDamage, daRows.WetnessIndex, daRows.SiteType), axis square
subplot(1,4,4), gscatter(daRows.MagnitudeOfDamage, daRows.ImperviousCover, daRows.SiteType), axis square
%subplot(1,5,5), gscatter(daRows.MagnitudeOfDamage, daRows.AgeHousing, daRows.SiteType), axis square
%% plot magnitude of damage against the respective isolated metric for each pair of sites
subplot(1,3,1), gscatter(daRows.MagnitudeOfDamage, daRows.DrainageArea, daRows.SiteType), xlabel('Magnitude Damage'), ylabel('Drainage Area'), axis square
subplot(1,3,2), gscatter(sRows.MagnitudeOfDamage, sRows.Slope, sRows.SiteType), xlabel('Magnitude Damage'), ylabel('Slope'), ...
title('Magnitude Damage vs isolated topographic metric for each pair of sites'), axis square
subplot(1,3,3), gscatter(ddRows.MagnitudeOfDamage, ddRows.DrainageDensity, ddRows.SiteType), xlabel('Magnitude Damage'), ylabel('Drainage Density'), axis square
%% get rows containing tilt and damage length measurements for each site, for H, L, and both H + L
daltilt = damage(~isnan(damage.DamageMetricsTilt_degreeFromVertical_) & strcmp(damage.SiteType, {'DA_L'}), :);
dahtilt = damage(~isnan(damage.DamageMetricsTilt_degreeFromVertical_) & strcmp(damage.SiteType, {'DA_H'}), :);
datilt = vertcat(daltilt,dahtilt);
ddltilt = damage(~isnan(damage.DamageMetricsTilt_degreeFromVertical_) & strcmp(damage.SiteType, {'DD_L'}), :);
ddhtilt = damage(~isnan(damage.DamageMetricsTilt_degreeFromVertical_) & strcmp(damage.SiteType, {'DD_H'}), :);
ddtilt = vertcat(ddltilt,ddhtilt);
sltilt = damage(~isnan(damage.DamageMetricsTilt_degreeFromVertical_) & strcmp(damage.SiteType, {'S_L'}), :);
shtilt = damage(~isnan(damage.DamageMetricsTilt_degreeFromVertical_) & strcmp(damage.SiteType, {'S_H'}), :);
stilt = vertcat(sltilt,shtilt);
da_length = vertcat(damage(~isnan(damage.DamageMetricsLength_m_) & strcmp(damage.SiteType, {'DA_L'}), :), ...
damage(~isnan(damage.DamageMetricsLength_m_) & strcmp(damage.SiteType, {'DA_H'}), :));
dd_length = vertcat(damage(~isnan(damage.DamageMetricsLength_m_) & strcmp(damage.SiteType, {'DD_L'}), :), ...
damage(~isnan(damage.DamageMetricsLength_m_) & strcmp(damage.SiteType, {'DD_H'}), :));
s_length = vertcat(damage(~isnan(damage.DamageMetricsLength_m_) & strcmp(damage.SiteType, {'S_L'}), :), ...
damage(~isnan(damage.DamageMetricsLength_m_) & strcmp(damage.SiteType, {'S_H'}), :));
%% plot damage length and tilt for DA, DD, S, comparing H vs L sites for each
subplot(2,3,1), scatter(da_length.Low_1_High_2, da_length.DamageMetricsLength_m_), xlim([0.75 2.25]), ...
ylabel('Damage Length (m)'), set(gca,'xticklabel',{[]}),xlabel('(L) DA (H)'), axis square
subplot(2,3,2), scatter(dd_length.Low_1_High_2, dd_length.DamageMetricsLength_m_), xlim([0.75 2.25]), set(gca,'xticklabel',{[]}),xlabel('(L) DD (H)'), axis square
subplot(2,3,3), scatter(s_length.Low_1_High_2, s_length.DamageMetricsLength_m_), xlim([0.75 2.25]), set(gca,'xticklabel',{[]}),xlabel('(L) S (H)'), axis square
subplot(2,3,4), scatter(datilt.Low_1_High_2, datilt.DamageMetricsTilt_degreeFromVertical_), xlim([0.75 2.25]), ylabel('Tilt (degrees from vertical)')
subplot(2,3,5), scatter(ddtilt.Low_1_High_2, ddtilt.DamageMetricsTilt_degreeFromVertical_), xlim([0.75 2.25]), ylim([0 45])
subplot(2,3,6), scatter(stilt.Low_1_High_2, stilt.DamageMetricsTilt_degreeFromVertical_), xlim([0.75 2.25]),
%% compare tilt for each pair of sites vs their respective topo metrics ***** I think axes should be switched...?*****
subplot(1,3,1), gscatter(datilt.DamageMetricsTilt_degreeFromVertical_, datilt.DrainageArea, datilt.SiteType), axis square
subplot(1,3,2), gscatter(ddtilt.DamageMetricsTilt_degreeFromVertical_, ddtilt.DrainageDensity, ddtilt.SiteType), axis square
subplot(1,3,3), gscatter(stilt.DamageMetricsTilt_degreeFromVertical_, stilt.Slope, stilt.SiteType), axis square
%% plot tilt for each pair of sites comparing H vs L
subplot(1,3,1), scatter(datilt.Low_1_High_2, datilt.DamageMetricsTilt_degreeFromVertical_), xlim([0.75 2.25]), ylabel('degrees from vertical'), set(gca,'xticklabel',{[]}),xlabel('(L) DA (H)'), axis square
subplot(1,3,2), scatter(ddtilt.Low_1_High_2, ddtilt.DamageMetricsTilt_degreeFromVertical_), xlim([0.75 2.25]), title('Tilt'), set(gca,'xticklabel',{[]}),xlabel('(L) DD (H)'), axis square
subplot(1,3,3), scatter(stilt.Low_1_High_2, stilt.DamageMetricsTilt_degreeFromVertical_), xlim([0.75 2.25]), set(gca,'xticklabel',{[]}),xlabel('(L) S (H)'), axis square
%% isolate rows containing damage to sidewalks (type 1) and house-walls (type 4)
da_walk = vertcat(damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DA_L'}), :), ...
damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DA_H'}), :));
dd_walk = vertcat(damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DD_L'}), :), ...
damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DD_H'}), :));
s_walk = vertcat(damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'S_L'}), :), ...
damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'S_H'}), :));
dal_walk = damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DA_L'}), :);
dah_walk = damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DA_H'}), :);
sl_walk = damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'S_L'}), :);
sh_walk = damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'S_H'}), :);
ddl_walk = damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DD_L'}), :);
ddh_walk = damage(damage.DamagedStructure == 1 & strcmp(damage.SiteType, {'DD_H'}), :);
da_wall = vertcat(damage(damage.DamagedStructure == 4 & strcmp(damage.SiteType, {'DA_L'}), :), ...
damage(damage.DamagedStructure == 4 & strcmp(damage.SiteType, {'DA_H'}), :));
dd_wall = vertcat(damage(damage.DamagedStructure == 4 & strcmp(damage.SiteType, {'DD_L'}), :), ...
damage(damage.DamagedStructure == 4 & strcmp(damage.SiteType, {'DD_H'}), :));
s_wall = vertcat(damage(damage.DamagedStructure == 4 & strcmp(damage.SiteType, {'S_L'}), :), ...
damage(damage.DamagedStructure == 4 & strcmp(damage.SiteType, {'S_H'}), :));
%% for sidewalk data only, plot damage magnitude vs damage length for DD, DA, S, with combined H + L sites
L = {'DA','DD','S'};
scatter(da_walk.MagnitudeOfDamage, da_walk.DamageMetricsLength_m_, 'b'),
hold on
scatter(dd_walk.MagnitudeOfDamage, dd_walk.DamageMetricsLength_m_, 'r'),
hold on
scatter(s_walk.MagnitudeOfDamage, s_walk.DamageMetricsLength_m_, 'c'),
ylim([-1 14]), xlim([0.5 5.5]), legend(L), title('Measured vs assigned damage: Sidewalks'), xlabel('Magnitude Of Damage'), ...
ylabel('Damage Length (m)'), xticks([1 2 3 4 5])
hold off
%% for house-wall data only, plot damage magnitude vs damage length for DD, DA, S, with combined H + L sites
L = {'DA','DD','S'};
scatter(da_wall.MagnitudeOfDamage, da_wall.DamageMetricsTilt_degreeFromVertical_, 'b'),
hold on
scatter(dd_wall.MagnitudeOfDamage, dd_wall.DamageMetricsTilt_degreeFromVertical_, 'r'),
hold on
scatter(s_wall.MagnitudeOfDamage, s_wall.DamageMetricsTilt_degreeFromVertical_, 'c'), ...
xlim([0.5 5.5]), legend(L), title('Measured vs assigned damage: Walls'), xlabel('Magnitude Of Damage'), ...
ylabel('Tilt (degrees from vertical'), xticks([1 2 3 4 5])
hold off
%% scatter plot of magnitude damage for all groups combined, comparing L vs H sites
scatter(da_length.Low_1_High_2, da_length.DamageMetricsLength_m_, 'b'), xlim([0.75 2.25]), ...
ylabel('Damage Length (m)'), set(gca,'xticklabel',{[]}),
hold on
scatter(dd_length.Low_1_High_2, dd_length.DamageMetricsLength_m_, 'r'),
hold on
scatter(s_length.Low_1_High_2, s_length.DamageMetricsLength_m_, 'c')
hold off
%scatter(dd.MagnitudeOfDamage, damage.SiteType),
%hold on
%scatter(ddRows.Low_1_High_2, ddRows.MagnitudeOfDamage, 'r'),
%hold on
%scatter(sRows.Low_1_High_2, sRows.MagnitudeOfDamage, 'c'),
%hold off
%% same as above but for H and L each group - bias results by knowing which site is which? ** looks like you can't tell, not enough mag 4&5 measured
scatter(dal_walk.MagnitudeOfDamage, dal_walk.DamageMetricsLength_m_, 'b'),
hold on
scatter(dah_walk.MagnitudeOfDamage, dah_walk.DamageMetricsLength_m_, 'b', '^'),
hold on
scatter(ddl_walk.MagnitudeOfDamage, ddl_walk.DamageMetricsLength_m_, 'r'),
hold on
scatter(ddh_walk.MagnitudeOfDamage, ddh_walk.DamageMetricsLength_m_, 'r', '^'),
hold on
scatter(sl_walk.MagnitudeOfDamage, sl_walk.DamageMetricsLength_m_, 'c'),
hold on
scatter(sh_walk.MagnitudeOfDamage, sh_walk.DamageMetricsLength_m_, 'c', '^')
ylim([-1 14]), xlim([0.5 5.5])
hold off
%% CDU: for sidewalks only, plot damage length vs CDU, all groups
L = {'DA','DD','S'};
scatter(da_walk.CDU, da_walk.DamageMetricsLength_m_, 'b'),
hold on
scatter(dd_walk.CDU, dd_walk.DamageMetricsLength_m_, 'r'),
hold on
scatter(s_walk.CDU, s_walk.DamageMetricsLength_m_, 'c'),
xlim([0.5 8.5]), legend(L), title('Measured damage vs CDU: Sidewalks'), xlabel('CDU'), ...
ylabel('Damage Length (m)'), xlim([2.5 7.5]), ylim([-1 15]), axis square
hold off
%% CDU: for house-walls only, plot tilt vs CDU, all groups***cdu_avg (min) (linear)
L = {'DA','DD','S'};
scatter(datilt.CDU, datilt.DamageMetricsTilt_degreeFromVertical_, 'b'),
hold on
scatter(ddtilt.CDU, ddtilt.DamageMetricsTilt_degreeFromVertical_, 'r'),
hold on
scatter(stilt.CDU, stilt.DamageMetricsTilt_degreeFromVertical_, 'c'),
xlim([0.5 8.5]), legend(L), title('Measured damage vs CDU: Walls'), xlabel('CDU'), ...
ylabel('Tilt(degrees from vertical'), xlim([2.5 7.5]), axis square
hold off
%% CDU mode - changed by julio, need to change back
L = {'DA','DD','S'};
scatter(DA_interp_CDUmode(tilted), datilt.DamageMetricsTilt_degreeFromVertical_, 'b'),
hold on
scatter(DD_interp_CDUmode(tilted), ddtilt.DamageMetricsTilt_degreeFromVertical_, 'r'),
scatter(S_interp_CDUmode(tilted), stilt.DamageMetricsTilt_degreeFromVertical_, 'c'),
%xlim([0.5 8.5]), legend(L), title('Measured damage vs CDU: Walls'), xlabel('CDU'), ...
% ylabel('Tilt(degrees from vertical'), xlim([2.5 7.5]), axis square
hold off
shgf
%% CDU min nearest - tilt
L = {'DA','DD','S'};
scatter(datilt.CDUminnearest, datilt.DamageMetricsTilt_degreeFromVertical_, 'b'),
hold on
scatter(ddtilt.CDUminnearest, ddtilt.DamageMetricsTilt_degreeFromVertical_, 'r'),
hold on
scatter(stilt.CDUminnearest, stilt.DamageMetricsTilt_degreeFromVertical_, 'c'),
xlim([0.5 8.5]), legend(L), title('Walls: CDU min filter'), xlabel('CDU'), ...
ylabel('Tilt (degrees from vertical)'), xlim([0.5 8.5]), axis square
hold off
%% CDU min nearest - sidewalks
L = {'DA','DD','S'};
scatter(da_walk.CDUminnearest, da_walk.DamageMetricsLength_m_, 'b'),
hold on
scatter(dd_walk.CDUminnearest, dd_walk.DamageMetricsLength_m_, 'r'),
hold on
scatter(s_walk.CDUminnearest, s_walk.DamageMetricsLength_m_, 'c'),
xlim([0.5 8.5]), legend(L), title('Sidewalks: CDU min filter'), xlabel('CDU'), ...
ylabel('Damage Length (m)'), xlim([0.5 8.5]), ylim([-1 15]), axis square
hold off
%% CDU mode nearest - plot tilt
L = {'DA','DD','S'};
scatter(datilt.CDUmodenearest, datilt.DamageMetricsTilt_degreeFromVertical_, 'b'),
hold on
scatter(ddtilt.CDUmodenearest, ddtilt.DamageMetricsTilt_degreeFromVertical_, 'r'),
hold on
scatter(stilt.CDUmodenearest, stilt.DamageMetricsTilt_degreeFromVertical_, 'c'),
xlim([0.5 8.5]), legend(L), title('Walls: CDU mode filter'), xlabel('CDU'), ...
ylabel('Tilt(degrees from vertical'), xlim([0.5 8.5]), axis square
hold off
%% CDU mode nearest - plot sidewalks
L = {'DA','DD','S'};
scatter(da_walk.CDUmodenearest, da_walk.DamageMetricsLength_m_, 'b'),
hold on
scatter(dd_walk.CDUmodenearest, dd_walk.DamageMetricsLength_m_, 'r'),
hold on
scatter(s_walk.CDUmodenearest, s_walk.DamageMetricsLength_m_, 'c'),
xlim([0.5 8.5]), legend(L), title('Sidewalks: CDU mode filter'), xlabel('CDU'), ...
ylabel('Damage Length (m)'), xlim([0.5 8.5]), ylim([-1 15]), axis square
hold off
%% CDU: mag damage all vs cdu min filter
L = {'DA','DD','S'};
scatter(daRows.CDUminnearest, daRows.MagnitudeOfDamage, 80, 'b'),
hold on
scatter(ddRows.CDUminnearest, ddRows.MagnitudeOfDamage, 80, '.', 'r'),
hold on
scatter(sRows.CDUminnearest, sRows.MagnitudeOfDamage, 170, 'MarkerEdgeColor', [0 0.8 0.2]),
xlim([0.5 8.5]), legend(L), title('Magnitude: CDU min filter'), xlabel('CDU'), ...
ylabel('Mag Dam'), xlim([0.5 8.5]), ylim([0 6]), axis square
hold off
%% CDU: mag damage all vs cdu mode filter
L = {'DA','DD','S'};
scatter(daRows.CDUmodenearest, daRows.MagnitudeOfDamage, 80, 'b'),
hold on
scatter(ddRows.CDUmodenearest, ddRows.MagnitudeOfDamage, 80, '.', 'r'),
hold on
scatter(sRows.CDUmodenearest, sRows.MagnitudeOfDamage, 170, 'MarkerEdgeColor', [0 0.8 0.2]),
xlim([0.5 8.5]), legend(L), title('Magnitude: CDU mode filter'), xlabel('CDU'), ...
ylabel('Mag Dam'), xlim([0.5 8.5]), ylim([0 6]), axis square
hold off
%% CDU: magnitude damage vs CDU mode nearest:sidewalks
L = {'DA','DD','S'};
scatter(da_walk.CDUmodenearest, da_walk.MagnitudeOfDamage, 'b'),
hold on
scatter(dd_walk.CDUmodenearest, dd_walk.MagnitudeOfDamage, 'r'),
hold on
scatter(s_walk.CDUmodenearest, s_walk.MagnitudeOfDamage, 'c'),
xlim([0.5 8.5]), legend(L), title('Sidewalks: CDU mode filter'), xlabel('CDU'), ...
ylabel('Magnitude of Damage'), xlim([0.5 8.5]), ylim([-1 15]), axis square
hold off
%% CDU: mag dam vs CDU min nearest: sidewalks
L = {'DA','DD','S'};
scatter(da_walk.CDUminnearest, da_walk.MagnitudeOfDamage, 'b'),
hold on
scatter(dd_walk.CDUminnearest, dd_walk.MagnitudeOfDamage, 'r'),
hold on
scatter(s_walk.CDUminnearest, s_walk.MagnitudeOfDamage, 'c'),
xlim([0.5 8.5]), legend(L), title('Sidewalks: CDU min filter'), xlabel('CDU'), ...
ylabel('Magnitude of Damage'), xlim([0.5 8.5]), ylim([-1 15]), axis square
hold off
%% CDU: mag dam vs CDU mode nearest: walls-tilt
L = {'DA','DD','S'};
scatter(datilt.CDUmodenearest, datilt.MagnitudeOfDamage, 'b'),
hold on
scatter(ddtilt.CDUmodenearest, ddtilt.MagnitudeOfDamage, 'r'),
hold on
scatter(stilt.CDUmodenearest, stilt.MagnitudeOfDamage, 'c'),
xlim([0.5 8.5]), legend(L), title('Walls: CDU mode filter'), xlabel('CDU'), ...
ylabel('Magnitude of Damage'), xlim([0.5 8.5]), ylim([-1 15]), axis square
hold off
%% CDU: mag dam vs CDU min nearest: walls-tilt
L = {'DA','DD','S'};
scatter(datilt.CDUminnearest, datilt.MagnitudeOfDamage, 'b'),
hold on
scatter(ddtilt.CDUminnearest, ddtilt.MagnitudeOfDamage, 'r'),
hold on
scatter(stilt.CDUminnearest, stilt.MagnitudeOfDamage, 'c'),
xlim([0.5 8.5]), legend(L), title('Walls: CDU min filter'), xlabel('CDU'), ...
ylabel('Magnitude of Damage'), xlim([0.5 8.5]), ylim([-1 15]), axis square
hold off
%% CDU: plot magnitude of damage vs CDU
subplot(1,3,1), gscatter(daRows.MagnitudeOfDamage, daRows.CDU, daRows.SiteType), axis square
subplot(1,3,2), gscatter(sRows.MagnitudeOfDamage, sRows.CDU, sRows.SiteType), axis square
subplot(1,3,3), gscatter(ddRows.MagnitudeOfDamage, ddRows.CDU, ddRows.SiteType), axis square
%% CDU: plot damage length (*all damage, not just sidewalks) vs CDU
subplot(1,3,1), gscatter(daRows.DamageMetricsLength_m_, daRows.CDU, daRows.SiteType), axis square
subplot(1,3,2), gscatter(sRows.DamageMetricsLength_m_, sRows.CDU, sRows.SiteType), axis square
subplot(1,3,3), gscatter(ddRows.DamageMetricsLength_m_, ddRows.CDU, ddRows.SiteType), axis square