- Create a new pipeline or open an existing pipeline.
- Expand the left side of your screen to view the file browser.
- Scroll down and click on a file named
io_config.yaml
. - Enter the following keys and values under the key named
default
(you can have multiple profiles, add it under whichever is relevant to you)version: 0.1.1 default: AWS_ACCESS_KEY_ID: ... AWS_SECRET_ACCESS_KEY: ...
- Create a new pipeline or open an existing pipeline.
- Add a data loader or transformer block (the code snippet below is for a data loader).
- Select
Generic (no template)
. - Enter this code snippet (note: change the
config_profile
fromdefault
if you have a different profile):from mage_ai.data_preparation.repo_manager import get_repo_path from mage_ai.io.config import ConfigFileLoader from mage_ai.io.s3 import S3 from os import path from pandas import DataFrame if 'data_loader' not in globals(): from mage_ai.data_preparation.decorators import data_loader @data_loader def load_from_s3_bucket(**kwargs) -> DataFrame: config_path = path.join(get_repo_path(), 'io_config.yaml') config_profile = 'default' bucket_name = '...' # Change to your bucket name object_key = '...' # Change to your object key return S3.with_config(ConfigFileLoader(config_path, config_profile)).load( bucket_name, object_key, )
- Run the block.
S3 connection endpoint URL error
Open the io_config.yaml
file at the root of your project (e.g. default_repo/io_config.yaml
).
Change the value for the AWS_REGION
key to the region of your S3 bucket (e.g. us-west-2
).