-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathutils.py
198 lines (168 loc) · 6.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import datetime
from typing import Union
import numpy as np
import os
import torch
def print_message(message: str) -> None:
"""
Prints a message with the current time.
:param str message: Message to print
"""
print(f"<{str(datetime.datetime.now()).split('.')[0]}> {message}")
def mse(image1: np.ndarray, image2: np.ndarray) -> np.float:
"""
Mean squared error between two images (np.ndarrays).
:param np.ndarray image1: First image
:param np.ndarray image2: Second image
:return: Float - Mean squared error
"""
err = np.float(np.sum((np.asarray(image1) - np.asarray(image2)) ** 2))
err /= np.float(image1.shape[0] * image1.shape[1])
return err
def length_normalize(
matrix: np.ndarray,
) -> np.ndarray:
"""
Normalizes the length of a matrix.
:param np.ndarray matrix: Matrix to normalize
:return: np.ndarray - Normalized matrix
"""
norms = np.sqrt(np.sum(matrix ** 2, axis=1))
norms[norms == 0] = 1
return matrix / norms[:, np.newaxis]
class IOHandler:
"""
Class for handling input and output formats. It is used to convert between keyboard input and controller input.
It also handles the saving and loading of the data.
"""
def __init__(self):
"""
INIT
"""
self.keys2controllerMatrix = np.array(
[
[0.0, 0.0],
[-1.0, 0.0],
[1.0, 0.0],
[0.0, 1.0],
[0.0, -1.0],
[-1.0, 1.0],
[-1.0, -1.0],
[1.0, 1.0],
[1.0, -1.0],
]
)
# self.keys2controllerMatrix_norm = length_normalize(self.keys2controllerMatrix)
def keys2controller(self, keys: int) -> np.ndarray:
"""
Converts a keyboard input to a controller input.
:param int keys: Keyboard input
:return: np.ndarray [2] - Controller input
"""
return self.keys2controllerMatrix[keys]
def controller2keys(self, controller_vector: np.ndarray) -> int:
"""
Converts a controller input to a keyboard input.
:param np.ndarray controller_vector: Controller input [2]
:return: int - Keyboard input
"""
return int(
np.argmin(
np.sum(
(
self.keys2controllerMatrix[np.newaxis, :]
- controller_vector[np.newaxis, :][:, np.newaxis]
)
** 2,
-1,
)
)
)
def imagename_input_conversion(
self, image_name: str, output_type: str
) -> Union[int, np.ndarray]:
"""
Converts an image name to an 'output_type' input
:param str image_name: Image name
:param str output_type: Output type: keyboard or controller
:return: Union[int, np.ndarray] - Output in the specified format
"""
metadata = os.path.basename(image_name)[:-5]
header, values = metadata.split("%")
control_mode = header[0]
values = values.split("_")
if control_mode == "controller":
input_value: np.ndarray = np.asarray(
[float(x) for x in values[-1].split(",")],
dtype=np.float32,
)
input_value = np.asarray(
[input_value[0], (input_value[2] - input_value[1]) / 2]
)
if output_type == "controller":
return input_value
elif output_type == "keyboard":
return self.controller2keys(controller_vector=input_value)
else:
raise ValueError(
f"{output_type} output type not supported. Supported outputs: [keyboard,controller]"
)
else:
input_value: int = int(values[-1])
if output_type == "controller":
return self.keys2controller(input_value)
elif output_type == "keyboard":
return input_value
else:
raise ValueError(
f"{output_type} output type not supported. Supported outputs: [keyboard,controller]"
)
def input_conversion(
self, input_value: Union[int, np.ndarray], output_type: str
) -> Union[int, np.ndarray]:
"""
Converts an input to an 'output_type' input
:param Union[int, np.ndarray] input_value: Input value
:param str output_type: Output type: keyboard or controller
:return: Union[int, np.ndarray] - Output in the specified format
"""
if type(input_value) == int or input_value.size == 1:
if output_type == "controller":
return self.keys2controller(int(input_value))
elif output_type == "keyboard":
return int(input_value)
else:
raise ValueError(
f"{output_type} output type not supported. Supported outputs: [keyboard,controller]"
)
else:
if output_type == "controller":
return input_value
elif output_type == "keyboard":
return self.controller2keys(controller_vector=input_value)
else:
raise ValueError(
f"{output_type} output type not supported. Supported outputs: [keyboard,controller]"
)
def get_mask(
train: bool,
nheads: int,
mask_prob: float = 0.0,
sequence_length: int = 5,
) -> torch.tensor:
if train:
bernolli_matrix = torch.cat(
(
torch.tensor([0]).float(),
(torch.tensor([mask_prob]).float()).repeat(sequence_length),
),
0,
)
bernolli_distributor = torch.distributions.Bernoulli(bernolli_matrix)
sample = bernolli_distributor.sample()
mask = sample > 0
else:
mask = torch.zeros(sequence_length + 1, dtype=torch.bool)
mask = mask.repeat(nheads, sequence_length + 1, 1)
mask.requires_grad = False
return mask