-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathtrain.py
781 lines (696 loc) · 27.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
from model import Tedd1104ModelPL
from typing import List
import argparse
from dataset import Tedd1104DataModule
import os
from pytorch_lightning import loggers as pl_loggers
import pytorch_lightning as pl
from dataset import count_examples
import math
try:
import wandb
wandb.require("service")
except ImportError:
wandb = None
def train_new_model(
train_dir: str,
val_dir: str,
output_dir: str,
batch_size: int,
max_epochs: int,
cnn_model_name: str,
devices: int = 1,
accelerator: str = "auto",
precision: str = "bf16",
strategy=None,
accumulation_steps: int = 1,
hide_map_prob: float = 0.0,
test_dir: str = None,
dropout_images_prob=None,
variable_weights: List[float] = None,
control_mode: str = "keyboard",
val_check_interval: float = 0.25,
dataloader_num_workers=os.cpu_count(),
pretrained_cnn: bool = True,
embedded_size: int = 512,
nhead: int = 8,
num_layers_encoder: int = 1,
lstm_hidden_size: int = 512,
dropout_cnn_out: float = 0.1,
positional_embeddings_dropout: float = 0.1,
dropout_encoder: float = 0.1,
dropout_encoder_features: float = 0.8,
mask_prob: float = 0.0,
sequence_size: int = 5,
encoder_type: str = "transformer",
bidirectional_lstm=True,
checkpoint_path: str = None,
label_smoothing: float = None,
report_to: str = "wandb",
find_lr: bool = False,
optimizer_name: str = "adamw",
scheduler_name: str = "linear",
learning_rate: float = 1e-5,
weight_decay: float = 1e-3,
warmup_factor: float = 0.05,
):
"""
Train a new model.
:param str train_dir: The directory containing the training data.
:param str val_dir: The directory containing the validation data.
:param str output_dir: The directory to save the model to.
:param int batch_size: The batch size.
:param int accumulation_steps: The number of steps to accumulate gradients.
:param int max_epochs: The maximum number of epochs to train for.
:param float hide_map_prob: Probability of hiding the minimap (0<=hide_map_prob<=1)
:param float dropout_images_prob: Probability of dropping an image (0<=dropout_images_prob<=1)
:param str test_dir: The directory containing the test data.
:param str control_mode: Model output format: keyboard (Classification task: 9 classes) or controller (Regression task: 2 variables)
:param int dataloader_num_workers: The number of workers to use for the dataloader.
:param int embedded_size: Size of the output embedding
:param float dropout_cnn_out: Dropout rate for the output of the CNN
:param str cnn_model_name: Name of the CNN model from torchvision.models
:param float val_check_interval: The interval to check the validation accuracy.
:param int devices: Number of devices to use.
:param str accelerator: Accelerator to use. If 'auto', tries to automatically detect TPU, GPU, CPU or IPU system.
:param str precision: Precision to use. Double precision (64), full precision (32), half precision (16) or bfloat16
precision (bf16). Can be used on CPU, GPU or TPUs.
:param str strategy: Strategy to use for data parallelism. "None" for no data parallelism,
ddp_find_unused_parameters_false for DDP.
:param str report_to: Where to report the results. "tensorboard" for TensorBoard, "wandb" for W&B.
:param bool pretrained_cnn: If True, the model will be loaded with pretrained weights
:param int embedded_size: Size of the input feature vectors
:param int nhead: Number of heads in the multi-head attention
:param int num_layers_encoder: number of transformer layers in the encoder
:param float mask_prob: probability of masking each input vector in the transformer
:param float positional_embeddings_dropout: Dropout rate for the positional embeddings
:param int sequence_size: Length of the input sequence
:param float dropout_encoder: Dropout rate for the encoder
:param float dropout_encoder_features: Dropout probability of the encoder output
:param int lstm_hidden_size: LSTM hidden size
:param bool bidirectional_lstm: forward or bidirectional LSTM
:param List[float] variable_weights: List of weights for the loss function [9] if control_mode == "keyboard" or [2] if control_mode == "controller"
:param str encoder_type: Encoder type: transformer or lstm
:param float label_smoothing: Label smoothing for the classification task
:param str checkpoint_path: Path to a checkpoint to load the model from (Useful if you want to load a model pretrained in the Image Reordering Task)
:param bool find_lr: Whether to find the learning rate. We will use PytorchLightning's find_lr function.
See: https://pytorch-lightning.readthedocs.io/en/latest/advanced/training_tricks.html#learning-rate-finder
:param str optimizer_name: Optimizer to use: adamw or adafactor
:param str scheduler_name: Scheduler to use: linear, polynomial, cosine, plateau
:param float learning_rate: Learning rate
:param float weight_decay: Weight decay
:param float warmup_factor: Percentage of the total training steps to perform warmup
"""
assert control_mode.lower() in [
"keyboard",
"controller",
], f"{control_mode.lower()} control mode not supported. Supported dataset types: [keyboard, controller]. "
if dropout_images_prob is None:
dropout_images_prob = [0.0, 0.0, 0.0, 0.0, 0.0]
num_examples = count_examples(dataset_dir=train_dir)
num_update_steps_per_epoch = math.ceil(
math.ceil(math.ceil(num_examples / batch_size) / accumulation_steps / devices)
)
max_train_steps = max_epochs * num_update_steps_per_epoch
num_warmup_steps = int(max_train_steps * warmup_factor)
print(
f"\n*** Training info ***\n"
f"Number of training examples: {num_examples}\n"
f"Number of update steps per epoch: {num_update_steps_per_epoch}\n"
f"Max training steps: {max_train_steps}\n"
f"Number of warmup steps: {num_warmup_steps}\n"
f"Optimizer: {optimizer_name}\n"
f"Scheduler: {scheduler_name}\n"
f"Learning rate: {learning_rate}\n"
)
if not checkpoint_path:
model: Tedd1104ModelPL = Tedd1104ModelPL(
cnn_model_name=cnn_model_name,
pretrained_cnn=pretrained_cnn,
embedded_size=embedded_size,
nhead=nhead,
num_layers_encoder=num_layers_encoder,
lstm_hidden_size=lstm_hidden_size,
dropout_cnn_out=dropout_cnn_out,
positional_embeddings_dropout=positional_embeddings_dropout,
dropout_encoder=dropout_encoder,
dropout_encoder_features=dropout_encoder_features,
control_mode=control_mode,
sequence_size=sequence_size,
encoder_type=encoder_type,
bidirectional_lstm=bidirectional_lstm,
weights=variable_weights,
label_smoothing=label_smoothing,
accelerator=accelerator,
learning_rate=learning_rate,
weight_decay=weight_decay,
optimizer_name=optimizer_name,
scheduler_name=scheduler_name,
num_warmup_steps=num_warmup_steps,
num_training_steps=max_train_steps,
)
else:
print(f"Restoring model from {checkpoint_path}.")
model = Tedd1104ModelPL.load_from_checkpoint(
checkpoint_path=checkpoint_path,
dropout_cnn_out=dropout_cnn_out,
positional_embeddings_dropout=positional_embeddings_dropout,
dropout_encoder=dropout_encoder,
dropout_encoder_features=dropout_encoder_features,
mask_prob=mask_prob,
control_mode=control_mode,
lstm_hidden_size=lstm_hidden_size,
bidirectional_lstm=bidirectional_lstm,
strict=False,
learning_rate=learning_rate,
weight_decay=weight_decay,
optimizer_name=optimizer_name,
scheduler_name=scheduler_name,
num_warmup_steps=num_warmup_steps,
num_training_steps=max_train_steps,
)
if not os.path.exists(output_dir):
print(f"{output_dir} does not exits. We will create it.")
os.makedirs(output_dir)
data = Tedd1104DataModule(
train_dir=train_dir,
val_dir=val_dir,
test_dir=test_dir,
batch_size=batch_size,
hide_map_prob=hide_map_prob,
dropout_images_prob=dropout_images_prob,
control_mode=control_mode,
num_workers=dataloader_num_workers,
token_mask_prob=mask_prob,
transformer_nheads=None if model.encoder_type == "lstm" else model.nhead,
sequence_length=model.sequence_size,
)
experiment_name = os.path.basename(
output_dir if output_dir[-1] != "/" else output_dir[:-1]
)
if report_to == "tensorboard":
logger = pl_loggers.TensorBoardLogger(
save_dir=output_dir,
name=experiment_name,
)
elif report_to == "wandb":
logger = pl_loggers.WandbLogger(
name=experiment_name,
# id=experiment_name,
# resume=None,
project="TEDD1104",
save_dir=output_dir,
)
else:
raise ValueError(
f"Unknown logger: {report_to}. Please use 'tensorboard' or 'wandb'."
)
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval="step")
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=output_dir,
monitor="Validation/acc_k@1_macro",
mode="max",
save_last=True,
)
checkpoint_callback.CHECKPOINT_NAME_LAST = "{epoch}-last"
model.accelerator = accelerator
trainer = pl.Trainer(
devices=devices,
accelerator=accelerator,
precision=precision if precision == "bf16" else int(precision),
strategy=strategy,
val_check_interval=val_check_interval,
accumulate_grad_batches=accumulation_steps,
max_epochs=max_epochs,
logger=logger,
callbacks=[
# pl.callbacks.StochasticWeightAveraging(swa_lrs=1e-2),
checkpoint_callback,
lr_monitor,
],
gradient_clip_val=1.0 if optimizer_name.lower() != "adafactor" else 0.0,
log_every_n_steps=100,
auto_lr_find=find_lr,
)
if find_lr:
print(f"We will try to find the optimal learning rate.")
lr_finder = trainer.tuner.lr_find(model, datamodule=data)
print(lr_finder.results)
fig = lr_finder.plot(suggest=True)
fig.savefig(os.path.join(output_dir, "lr_finder.png"))
new_lr = lr_finder.suggestion()
print(f"We will train with the suggested learning rate: {new_lr}")
model.hparams.learning_rate = new_lr
trainer.fit(model, datamodule=data)
print(f"Best model path: {checkpoint_callback.best_model_path}")
if test_dir:
trainer.test(datamodule=data, ckpt_path="best")
def continue_training(
checkpoint_path: str,
train_dir: str,
val_dir: str,
batch_size: int,
max_epochs: int,
output_dir,
accumulation_steps,
devices: int = 1,
accelerator: str = "auto",
precision: str = "16",
strategy=None,
test_dir: str = None,
mask_prob: float = 0.0,
hide_map_prob: float = 0.0,
dropout_images_prob=None,
dataloader_num_workers=os.cpu_count(),
val_check_interval: float = 0.25,
report_to: str = "wandb",
):
"""
Continues training a model from a checkpoint.
:param str checkpoint_path: Path to the checkpoint to continue training from
:param str train_dir: The directory containing the training data.
:param str val_dir: The directory containing the validation data.
:param str output_dir: The directory to save the model to.
:param int batch_size: The batch size.
:param int accumulation_steps: The number of steps to accumulate gradients.
:param int devices: Number of devices to use.
:param str accelerator: Accelerator to use. If 'auto', tries to automatically detect TPU, GPU, CPU or IPU system.
:param str precision: Precision to use. Double precision (64), full precision (32), half precision (16) or bfloat16
precision (bf16). Can be used on CPU, GPU or TPUs.
:param str strategy: Strategy to use for data parallelism. "None" for no data parallelism,
ddp_find_unused_parameters_false for DDP.
:param str report_to: Where to report the results. "tensorboard" for TensorBoard, "wandb" for W&B.
:param int max_epochs: The maximum number of epochs to train for.
:param bool hide_map_prob: Probability of hiding the minimap (0<=hide_map_prob<=1)
:param float mask_prob: probability of masking each input vector in the transformer
:param float dropout_images_prob: Probability of dropping an image (0<=dropout_images_prob<=1)
:param str test_dir: The directory containing the test data.
:param int dataloader_num_workers: The number of workers to use for the dataloaders.
:param float val_check_interval: The interval in epochs to check the validation accuracy.
"""
if dropout_images_prob is None:
dropout_images_prob = [0.0, 0.0, 0.0, 0.0, 0.0]
print(f"Restoring checkpoint: {checkpoint_path}")
model = Tedd1104ModelPL.load_from_checkpoint(checkpoint_path=checkpoint_path)
print("Done! Preparing to continue training...")
data = Tedd1104DataModule(
train_dir=train_dir,
val_dir=val_dir,
test_dir=test_dir,
batch_size=batch_size,
hide_map_prob=hide_map_prob,
dropout_images_prob=dropout_images_prob,
control_mode=model.control_mode,
num_workers=dataloader_num_workers,
token_mask_prob=mask_prob,
transformer_nheads=None if model.encoder_type == "lstm" else model.nhead,
sequence_length=model.sequence_size,
)
experiment_name = os.path.basename(
output_dir if output_dir[-1] != "/" else output_dir[:-1]
)
if report_to == "tensorboard":
logger = pl_loggers.TensorBoardLogger(
save_dir=output_dir,
name=experiment_name,
)
elif report_to == "wandb":
logger = pl_loggers.WandbLogger(
name=experiment_name,
# id=experiment_name,
# resume="allow",
project="TEDD1104",
save_dir=output_dir,
)
else:
raise ValueError(
f"Unknown logger: {report_to}. Please use 'tensorboard' or 'wandb'."
)
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval="step")
checkpoint_callback = pl.callbacks.ModelCheckpoint(
dirpath=output_dir,
monitor="Validation/acc_k@1_macro",
mode="max",
save_last=True,
)
checkpoint_callback.CHECKPOINT_NAME_LAST = "{epoch}-last"
trainer = pl.Trainer(
devices=devices,
accelerator=accelerator,
precision=precision if precision == "bf16" else int(precision),
strategy=strategy,
val_check_interval=val_check_interval,
accumulate_grad_batches=accumulation_steps,
max_epochs=max_epochs,
logger=logger,
callbacks=[
pl.callbacks.StochasticWeightAveraging(swa_lrs=1e-2),
checkpoint_callback,
lr_monitor,
],
gradient_clip_val=1.0,
log_every_n_steps=100,
)
trainer.fit(
ckpt_path=checkpoint_path,
model=model,
datamodule=data,
)
# print(f"Best model path: {checkpoint_callback.best_model_path}")
if test_dir:
trainer.test(datamodule=data, ckpt_path="best")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Train a T.E.D.D. 1104 model in the supervised self-driving task."
)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument(
"--train_new",
action="store_true",
help="Train a new model",
)
group.add_argument(
"--continue_training",
action="store_true",
help="Continues training a model from a checkpoint.",
)
parser.add_argument(
"--train_dir",
type=str,
required=True,
help="The directory containing the training data.",
)
parser.add_argument(
"--val_dir",
type=str,
required=True,
help="The directory containing the validation data.",
)
parser.add_argument(
"--test_dir",
type=str,
default=None,
help="The directory containing the test data.",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The directory to save the model to.",
)
parser.add_argument(
"--encoder_type",
type=str,
choices=["lstm", "transformer"],
default="transformer",
help="The Encoder type to use: transformer or lstm",
)
parser.add_argument(
"--batch_size",
type=int,
required=True,
help="The batch size for training and eval.",
)
parser.add_argument(
"--accumulation_steps",
type=int,
default=1,
help="The number of steps to accumulate gradients.",
)
parser.add_argument(
"--max_epochs",
type=int,
required=True,
help="The maximum number of epochs to train for.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=os.cpu_count(),
help="Number of CPU workers for the Data Loaders",
)
parser.add_argument(
"--hide_map_prob",
type=float,
default=0.0,
help="Probability of hiding the minimap in the sequence (0<=hide_map_prob<=1)",
)
parser.add_argument(
"--dropout_images_prob",
type=float,
nargs=5,
default=[0.0, 0.0, 0.0, 0.0, 0.0],
help="Probability of dropping each image in the sequence (0<=dropout_images_prob<=1)",
)
parser.add_argument(
"--variable_weights",
type=float,
nargs="+",
default=None,
help="List of weights for the loss function [9] if control_mode == 'keyboard' "
"or [2] if control_mode == 'controller'",
)
parser.add_argument(
"--val_check_interval",
type=float,
default=1.0,
help="The interval in epochs between validation checks.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=3e-5,
help="[NEW MODEL] The learning rate for the optimizer.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=1e-4,
help="[NEW MODEL]] AdamW Weight Decay",
)
parser.add_argument(
"--optimizer_name",
type=str,
default="adamw",
choices=["adamw", "adafactor"],
help="[NEW MODEL] The optimizer to use: adamw or adafactor. Adafactor requires fairseq to be installed. "
"pip install fairseq",
)
parser.add_argument(
"--scheduler_name",
type=str,
default="linear",
choices=["linear", "plateau", "polynomial", "cosine"],
help="[NEW MODEL] The scheduler to use: linear, polynomial, cosine, plateau.",
)
parser.add_argument(
"--warmup_factor",
type=float,
default=0.05,
help="[NEW MODEL] Percentage of the total training steps that we will use for the warmup (0<=warmup_factor<=1)",
)
parser.add_argument(
"--cnn_model_name",
type=str,
default="efficientnet_b4",
help="[NEW MODEL] CNN model name from torchvision models, see https://pytorch.org/vision/stable/models.html "
"for a list of available models.",
)
parser.add_argument(
"--do_not_load_pretrained_cnn",
action="store_true",
help="[NEW MODEL] Do not load the pretrained weights for the cnn model",
)
parser.add_argument(
"--embedded_size",
type=int,
default=512,
help="[NEW MODEL] The size of the embedding for the encoder.",
)
parser.add_argument(
"--lstm_hidden_size",
type=int,
default=512,
help="[NEW MODEL LSTM] The size of the hidden state for the LSTM.",
)
parser.add_argument(
"--nhead",
type=int,
default=8,
help="[NEW MODEL Transformers] Number of heads in the multi-head attention",
)
parser.add_argument(
"--num_layers_encoder",
type=int,
default=4,
help="[NEW MODEL] Number of transformer layers in the encoder",
)
parser.add_argument(
"--bidirectional_lstm",
action="store_true",
help="[NEW MODEL LSTM] Forward or bidirectional LSTM",
)
parser.add_argument(
"--dropout_cnn_out",
type=float,
default=0.3,
help="[NEW MODEL] Dropout rate for the output of the CNN",
)
parser.add_argument(
"--positional_embeddings_dropout",
type=float,
default=0.1,
help="[NEW MODEL Transformer] Dropout rate for the positional embeddings",
)
parser.add_argument(
"--dropout_encoder",
type=float,
default=0.1,
help="[NEW MODEL] Dropout rate for the encoder",
)
parser.add_argument(
"--dropout_encoder_features",
type=float,
default=0.3,
help="[NEW MODEL] Dropout probability of the encoder output",
)
parser.add_argument(
"--mask_prob",
type=float,
default=0.2,
help="[TRANSFORMER] Probability of masking each input vector in the transformer encoder",
)
parser.add_argument(
"--sequence_size",
type=int,
default=5,
help="[NEW MODEL] Length of the input sequence. Placeholder for the future, only 5 supported",
)
parser.add_argument(
"--checkpoint_path",
type=str,
default=None,
help="If new_model is True, the path to the checkpoint to a pretrained model in the image reordering task. "
"If continue_training is True, the path to the checkpoint to continue training from.",
)
parser.add_argument(
"--control_mode",
type=str,
default="keyboard",
choices=["keyboard", "controller"],
help="Model output format: keyboard (Classification task: 9 classes) "
"or controller (Regression task: 2 variables)",
)
parser.add_argument(
"--label_smoothing",
type=float,
default=0.1,
help="[NEW MODEL] Label smoothing in the CrossEntropyLoss "
"if we are in the classification task (control_mode == 'keyboard')",
)
parser.add_argument(
"--devices",
type=int,
default=1,
help="Number of GPUs/TPUs to use. ",
)
parser.add_argument(
"--accelerator",
type=str,
default="auto",
choices=["auto", "tpu", "gpu", "cpu", "ipu"],
help="Accelerator to use. If 'auto', tries to automatically detect TPU, GPU, CPU or IPU system",
)
parser.add_argument(
"--precision",
type=str,
default="16",
choices=["bf16", "16", "32", "64"],
help=" Double precision (64), full precision (32), "
"half precision (16) or bfloat16 precision (bf16). "
"Can be used on CPU, GPU or TPUs.",
)
parser.add_argument(
"--strategy",
type=str,
default=None,
help="Supports passing different training strategies with aliases (ddp, ddp_spawn, etc)",
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
choices=["wandb", "tensorboard"],
help="Report to wandb or tensorboard",
)
parser.add_argument(
"--find_lr",
action="store_true",
help="Find the optimal learning rate for the model. We will use Pytorch Lightning's find_lr function. "
"See: "
"https://pytorch-lightning.readthedocs.io/en/latest/advanced/training_tricks.html#learning-rate-finder",
)
args = parser.parse_args()
if args.train_new:
train_new_model(
train_dir=args.train_dir,
val_dir=args.val_dir,
test_dir=args.test_dir,
output_dir=args.output_dir,
batch_size=args.batch_size,
max_epochs=args.max_epochs,
cnn_model_name=args.cnn_model_name,
accumulation_steps=args.accumulation_steps,
hide_map_prob=args.hide_map_prob,
dropout_images_prob=args.dropout_images_prob,
variable_weights=args.variable_weights,
control_mode=args.control_mode,
val_check_interval=args.val_check_interval,
dataloader_num_workers=args.dataloader_num_workers,
pretrained_cnn=not args.do_not_load_pretrained_cnn,
embedded_size=args.embedded_size,
nhead=args.nhead,
num_layers_encoder=args.num_layers_encoder,
lstm_hidden_size=args.lstm_hidden_size,
dropout_cnn_out=args.dropout_cnn_out,
dropout_encoder_features=args.dropout_encoder_features,
positional_embeddings_dropout=args.positional_embeddings_dropout,
dropout_encoder=args.dropout_encoder,
mask_prob=args.mask_prob,
sequence_size=args.sequence_size,
encoder_type=args.encoder_type,
bidirectional_lstm=args.bidirectional_lstm,
checkpoint_path=args.checkpoint_path,
label_smoothing=args.label_smoothing,
devices=args.devices,
accelerator=args.accelerator,
precision=args.precision,
strategy=args.strategy,
report_to=args.report_to,
find_lr=args.find_lr,
learning_rate=args.learning_rate,
weight_decay=args.weight_decay,
optimizer_name=args.optimizer_name,
scheduler_name=args.scheduler_name,
warmup_factor=args.warmup_factor,
)
else:
continue_training(
checkpoint_path=args.checkpoint_path,
train_dir=args.train_dir,
val_dir=args.val_dir,
test_dir=args.test_dir,
output_dir=args.output_dir,
batch_size=args.batch_size,
accumulation_steps=args.accumulation_steps,
max_epochs=args.max_epochs,
mask_prob=args.mask_prob,
hide_map_prob=args.hide_map_prob,
dropout_images_prob=args.dropout_images_prob,
dataloader_num_workers=args.dataloader_num_workers,
devices=args.devices,
accelerator=args.accelerator,
precision=args.precision,
strategy=args.strategy,
report_to=args.report_to,
)