-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathrun_TEDD1104.py
401 lines (337 loc) · 14.4 KB
/
run_TEDD1104.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from model import Tedd1104ModelPL
from keyboard.getkeys import key_check
import argparse
from screen.screen_recorder import ImageSequencer
import torch
import logging
import time
from tkinter import *
import numpy as np
import cv2
from torchvision import transforms
from utils import mse
from keyboard.inputsHandler import select_key
from keyboard.getkeys import id_to_key
import math
from typing import Optional
try:
from controller.xbox_controller_emulator import XboxControllerEmulator
_controller_available = True
except ImportError:
_controller_available = False
XboxControllerEmulator = None
print(
f"[WARNING!] Controller emulation unavailable, see controller/setup.md for more info. "
f"You can ignore this warning if you will use the keyboard as controller for TEDD1104."
)
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
logging.warning("GPU not found, using CPU, inference will be very slow.")
def run_ted1104(
checkpoint_path: str,
enable_evasion: bool,
show_current_control: bool,
num_parallel_sequences: int = 2,
width: int = 1600,
height: int = 900,
full_screen: bool = False,
evasion_score=1000,
control_mode: str = "keyboard",
enable_segmentation: str = False,
dtype=torch.float32,
) -> None:
"""
Run TEDD1104 model in Real-Time inference
HOWTO:
- If you play in windowed mode move the game window to the top left corner of the primary screen.
- If you play in full screen mode, set the full_screen parameter to True.
- Set your game to width x height resolution specified in the parameters.
- If you TEDD1104 to use the keyboard for controlling the game set the control_mode parameter to "keyboard".
- If you TEDD1104 to use an vXbox Controller for controlling the game set the control_mode parameter to "controller".
- Run the script and let TEDD1104 Play the game!
- Detailed instructions can be found in the README.md file.
:param str checkpoint_path: Path to the model checkpoint file.
:param bool enable_evasion: Enable evasion, if the vehicle gets stuck we will reverse and randomly turn left/right.
:param bool show_current_control: Show if TEDD or the user is driving in the screen .
:param int num_parallel_sequences: Number of sequences to run in parallel.
:param int width: Width of the game window.
:param int height: Height of the game window.
:param bool full_screen: If the game is played in full screen mode.
:param int evasion_score: Threshold to trigger the evasion.
:param str control_mode: Device that TEDD will use from driving "keyboard" or "controller" (xbox controller).
:param bool enable_segmentation: Experimental. Enable segmentation using segformer (It will only apply segmentation
to the images displayed to the user if you push the "L" key). Requires huggingface transformers to be installed
(https://huggingface.co/docs/transformers/index). Very GPU demanding!
:param dtype: Data type to use for the model. BF16 is only supported on Nvidia Ampere GPUs and requires
PyTorch 1.10 or higher.
"""
assert control_mode in [
"keyboard",
"controller",
], f"{control_mode} control mode not supported. Supported dataset types: [keyboard, controller]. "
if control_mode == "controller" and not _controller_available:
raise ModuleNotFoundError(
f"Controller emulation not available see controller/setup.md for more info."
)
show_what_ai_sees: bool = False
fp16: bool
model = Tedd1104ModelPL.load_from_checkpoint(
checkpoint_path=checkpoint_path
) # hparams_file=hparams_path
model.eval()
model.to(dtype=dtype, device=device)
image_segformer = None
if enable_segmentation:
from segmentation.segmentation_segformer import ImageSegmentation
image_segformer = ImageSegmentation(device=device)
if control_mode == "controller":
xbox_controller: Optional[XboxControllerEmulator] = XboxControllerEmulator()
else:
xbox_controller = None
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
img_sequencer = ImageSequencer(
width=width,
height=height,
full_screen=full_screen,
get_controller_input=False,
num_sequences=num_parallel_sequences,
total_wait_secs=5,
)
if show_current_control:
root = Tk()
var = StringVar()
var.set("T.E.D.D. 1104 Driving")
text_label = Label(root, textvariable=var, fg="green", font=("Courier", 44))
text_label.pack()
else:
root = None
var = None
text_label = None
last_time: float = time.time()
score: np.float = np.float(0)
last_num: int = 5 # The image sequence starts with images containing zeros, wait until it is filled
close_app: bool = False
model_prediction = np.zeros(3 if control_mode == "controller" else 1)
lt: float = 0
rt: float = 0
lx: float = 0
while not close_app:
try:
while last_num == img_sequencer.num_sequence:
time.sleep(0.01)
last_num = img_sequencer.num_sequence
img_seq, _ = img_sequencer.get_sequence()
init_copy_time: float = time.time()
keys = key_check()
if "J" not in keys:
x: torch.tensor = torch.stack(
(
transform(img_seq[0] / 255.0),
transform(img_seq[1] / 255.0),
transform(img_seq[2] / 255.0),
transform(img_seq[3] / 255.0),
transform(img_seq[4] / 255.0),
),
dim=0,
).to(device=device, dtype=dtype)
with torch.no_grad():
model_prediction: torch.tensor = (
model(x, output_mode=control_mode, return_best=True)[0]
.cpu()
.numpy()
)
if control_mode == "controller":
if model_prediction[1] > 0:
rt = min(1.0, float(model_prediction[1])) * 2 - 1
lt = -1
else:
rt = -1
lt = min(1.0, math.fabs(float(model_prediction[1]))) * 2 - 1
lx = max(-1.0, min(1.0, float(model_prediction[0])))
xbox_controller.set_controller_state(
lx=lx,
lt=lt,
rt=rt,
)
else:
select_key(model_prediction)
key_push_time: float = time.time()
if show_current_control:
var.set("T.E.D.D. 1104 Driving")
text_label.config(fg="green")
root.update()
if enable_evasion:
score = mse(img_seq[0], img_seq[4])
if score < evasion_score:
if show_current_control:
var.set("Evasion maneuver")
text_label.config(fg="blue")
root.update()
if control_mode == "controller":
xbox_controller.set_controller_state(lx=0, lt=1.0, rt=-1.0)
time.sleep(1)
if np.random.rand() > 0.5:
xbox_controller.set_controller_state(
lx=1.0, lt=0.0, rt=-1.0
)
else:
xbox_controller.set_controller_state(
lx=-1.0, lt=0.0, rt=-1.0
)
time.sleep(0.2)
else:
select_key(4)
time.sleep(1)
if np.random.rand() > 0.5:
select_key(6)
else:
select_key(8)
time.sleep(0.2)
if show_current_control:
var.set("T.E.D.D. 1104 Driving")
text_label.config(fg="green")
root.update()
else:
if show_current_control:
var.set("Manual Control")
text_label.config(fg="red")
root.update()
if control_mode == "controller":
xbox_controller.set_controller_state(lx=0.0, lt=-1, rt=-1.0)
key_push_time: float = 0.0
if show_what_ai_sees:
if enable_segmentation:
img_seq = image_segformer.add_segmentation(images=img_seq)
cv2.imshow("window1", img_seq[0])
cv2.waitKey(1)
cv2.imshow("window2", img_seq[1])
cv2.waitKey(1)
cv2.imshow("window3", img_seq[2])
cv2.waitKey(1)
cv2.imshow("window4", img_seq[3])
cv2.waitKey(1)
cv2.imshow("window5", img_seq[4])
cv2.waitKey(1)
if "L" in keys:
time.sleep(0.1) # Wait for key release
if show_what_ai_sees:
cv2.destroyAllWindows()
show_what_ai_sees = False
else:
show_what_ai_sees = True
time_it: float = time.time() - last_time
if control_mode == "controller":
info_message = (
f"LX: {int(model_prediction[0] * 100)}%"
f"\n LT: {int(lt * 100)}%\n"
f"RT: {int(rt * 100)}%"
)
else:
info_message = f"Predicted Key: {id_to_key(model_prediction)}"
print(
f"Recording at {img_sequencer.screen_recorder.fps} FPS\n"
f"Actions per second {None if time_it == 0 else 1 / time_it}\n"
f"Reaction time: {round(key_push_time - init_copy_time, 3) if key_push_time > 0 else 0} secs\n"
f"{info_message}\n"
f"Difference from img 1 to img 5 {None if not enable_evasion else score}\n"
f"Push Ctrl + C to exit\n"
f"Push L to see the input images\n"
f"Push J to use to use manual control\n",
end="\r",
)
last_time = time.time()
except KeyboardInterrupt:
print()
img_sequencer.stop()
if control_mode == "controller":
xbox_controller.stop()
close_app = True
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
type=str,
required=True,
help="Path to the model checkpoint file.",
)
parser.add_argument("--width", type=int, default=1600, help="Game window width")
parser.add_argument("--height", type=int, default=900, help="Game window height")
parser.add_argument(
"--enable_evasion",
action="store_true",
help="Enable evasion, if the vehicle gets stuck we will reverse and randomly turn left/right.",
)
parser.add_argument(
"--show_current_control",
action="store_true",
help="Show if TEDD or the user is driving in the screen .",
)
parser.add_argument(
"--num_parallel_sequences",
type=int,
default=3,
help="number of parallel sequences to record, if the number is higher the model will do more "
"iterations per second (will push keys more often) provided your GPU is fast enough. "
"This improves the performance of the model but increases the CPU and RAM usage.",
)
parser.add_argument(
"--evasion_score",
type=float,
default=200,
help="Threshold to trigger the evasion.",
)
parser.add_argument(
"--control_mode",
type=str,
choices=["keyboard", "controller"],
default="keyboard",
help="Device that TEDD will use from driving 'keyboard' or 'controller' (xbox controller).",
)
parser.add_argument(
"--full_screen",
action="store_true",
help="If you are playing in full screen (no window border on top) set this flag",
)
parser.add_argument(
"--enable_segmentation",
action="store_true",
help="Experimental. Enable segmentation using segformer (It will only apply segmentation"
"to the images displayed to the user if you push the 'L' key). Requires huggingface transformers to be "
"installed (https://huggingface.co/docs/transformers/index). Very GPU demanding!",
)
parser.add_argument(
"--dtype",
choices=["32", "16", "bf16"],
default="32",
help="Use FP32, FP16 or BF16 (bfloat16) for inference. "
"BF16 requires a GPU with BF16 support (like Volta or Ampere) and Pytorch >= 1.10",
)
args = parser.parse_args()
if args.dtype == "32":
dtype = torch.float32
elif args.dtype == "16":
dtype = torch.float16
elif args.dtype == "bf16":
dtype = torch.bfloat16
else:
raise ValueError(f"Invalid dtype {args.dtype}. Choose from 32, 16 or bf16")
run_ted1104(
checkpoint_path=args.checkpoint_path,
width=args.width,
height=args.height,
full_screen=args.full_screen,
enable_evasion=args.enable_evasion,
show_current_control=args.show_current_control,
num_parallel_sequences=args.num_parallel_sequences,
evasion_score=args.evasion_score,
control_mode=args.control_mode,
enable_segmentation=args.enable_segmentation,
dtype=dtype,
)