-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathidf.py
96 lines (77 loc) · 2.53 KB
/
idf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
"""
Script to calculate the inverse document frequency (idf) used in tf-idf labels of a dataset.
"""
from olfmlm import data_utils
import numpy as np
from math import ceil, log
from multiprocessing import Pool
import pickle
import sys
import time
import tqdm
data_set_args = {
'path': ['bert_corpus'],#, 'cnn_dailymail', 'gutenberg'],
'seq_length': 128,
'lazy': True,
'delim': ',',
'text_key': 'text',
'label_key': 'label',
'non_binary_cols': None,
'split': [1.],
'loose': False,
'tokenizer_type': 'BertWordPieceTokenizer',
'tokenizer_model_path': 'tokenizer.model',
'vocab_size': 30522,
'model_type': 'bert-base-uncased',
'cache_dir': 'cache_dir',
'max_preds_per_seq': 80,
'presplit_sentences': True,
}
def sentence_tokenize(tokenizer, sent):
"""tokenize sentence and get token types if tokens=True"""
tokens = tokenizer.EncodeAsIds(sent).tokenization
return tokens
def get_doc(ds, idx):
"""gets text of document corresponding to idx"""
rtn = ds[idx]
if isinstance(rtn, dict):
rtn = rtn['text']
return rtn
def worker_init():
global ds_
global tokenizer_
ds_, tokenizer_ = data_utils.make_dataset(**data_set_args)
ds_.SetTokenizer(None)
def work(self_idx):
start_idx = self_idx * bin_size
end_idx = min((self_idx + 1) * bin_size, len(ds))
word_in_num_docs = {}
for i in range(int(start_idx), int(end_idx)):
doc = get_doc(ds_, i)
tokens = set(sentence_tokenize(tokenizer_, doc))
for tok in tokens:
word_in_num_docs[tok] = word_in_num_docs.get(tok, 0) + 1
print("Finished with bin", self_idx, flush=True)
return word_in_num_docs
ds, tokenizer = data_utils.make_dataset(**data_set_args)
num_workers = 32
num_subsets = 10000
bin_size = ceil(len(ds) / (num_subsets))
print("Total size:", len(ds))
start_time = time.time()
with Pool(num_workers, initializer=worker_init) as p:
result = list(p.imap(work, range(num_subsets)))
print("Took: ", time.time() - start_time, flush=True)
idfs = {}
for i in range(num_subsets):
idf = result[i]
for k, v in idf.items():
idfs[k] = idfs.get(k, 0) + v
idfs = {k: log(float(len(ds)) / float(idfs[k])) for k in idfs.keys()}
print("Writing idfs to file", flush=True)
with open("idf.p", "wb") as f:
pickle.dump(idfs, f)
print("Finished writing idfs to file", flush=True)
print("len idf:", len(idfs))
for test_tok in ["a", "is", "the", "fruit", "apple", "pear", "red", "pink", "crimson"]:
print(test_tok, ":", idfs[tokenizer.TokenToId(test_tok)])