-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
190 lines (157 loc) · 5.69 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# SPDX-FileCopyrightText: 2024 Idiap Research Institute <[email protected]>
#
# SPDX-FileContributor: Pierre Vuillecard <[email protected]>
#
# SPDX-License-Identifier: GPL-3.0-only
# app.py
import os
from io import BytesIO
import cv2
import imageio
import numpy as np
import rootutils
from flask import Flask, jsonify, render_template, request
rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True)
from src.utils_demo import (
FaceDetectorCV2,
FaceTracker,
HGPredictor,
MediapipePredictor,
TrackHandler,
Visualizer,
)
app = Flask(__name__)
os.makedirs("static/gifs", exist_ok=True)
# Global variable to store frames for creating a GIF
frame_buffer = {}
timestamps = []
event_already_draw = {}
# Instantiate
# face_detector = FaceDetectorYUNET()
face_detector = FaceDetectorCV2()
face_tracker = FaceTracker(
dt=1 / 15,
model_spec={
"order_pos": 1,
"dim_pos": 2,
"order_size": 0,
"dim_size": 2,
"q_var_pos": 1000.0,
"r_var_pos": 0.1,
},
)
face_predictor = MediapipePredictor()
hg_predictor = HGPredictor("cpu")
track_handler = TrackHandler(face_tracker)
visualizer = Visualizer(
draw_bbox=True,
draw_landmarks=False,
draw_head_gesture=True,
fontsize=1,
space_legend=20,
)
def clean_frame_buffer():
if len(timestamps) >= 300:
for i in range(len(timestamps) - 300):
time_stamp = timestamps[0]
frame_buffer.pop(time_stamp)
timestamps.pop(0)
def create_gif(event):
track_id = event.track_id
start_time = event.start
end_time = event.end
# get the idx of the start and end time
start_idx = timestamps.index(start_time)
end_idx = timestamps.index(end_time)
# get the frames
frames = [frame_buffer[timestamps[i]] for i in range(start_idx, end_idx)]
# get the bbox
track_timestamp = [face.timestamp for face in face_tracker.tracks_store[track_id]]
start_idx = track_timestamp.index(start_time)
end_idx = track_timestamp.index(end_time)
middle_idx = (start_idx + end_idx) // 2
bbox_loc = face_tracker.tracks_store[track_id][middle_idx].loc
# crop the frames making sure the bbox is within the frame
frames = [frame[bbox_loc.y1 : bbox_loc.y2, bbox_loc.x1 : bbox_loc.x2] for frame in frames]
frames = [cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in frames]
# create the gif
gif_buffer = BytesIO()
imageio.mimsave(gif_buffer, frames, format="GIF", duration=1 / 10, loop=0) # 15 FPS
gif_buffer.seek(0)
return gif_buffer
def predict_head_gesture(frame, timestamp):
# Detect faces
detection = face_detector.process_image(frame)
# Track the faces
face_tracker.update(detection, timestamp)
# Get the current track id
track_id = face_tracker.get_tracks()
# Detect the face landmarks in those faces
for track in track_id:
face_prediction = face_predictor.process_face(frame, face_tracker.tracks_store[track][-1])
if track in face_tracker.tracks_store:
face_tracker.tracks_store[track][-1].add_prediction(face_prediction)
output_track = hg_predictor.process(face_tracker, track_id)
track_handler.add_track_prediction(output_track)
last_event = track_handler.get_last_event()
# frame = visualizer.process(frame, face_tracker, output_track)
return frame, output_track, last_event
def get_gif_clip(track_id, event):
if track_id in event_already_draw:
if event.idx == event_already_draw[track_id].idx:
# same event then we skip
return None
else:
# we draw the event
gif_buffer = create_gif(event)
event_already_draw[track_id] = event
return gif_buffer
else:
# we draw the event
gif_buffer = create_gif(event)
event_already_draw[track_id] = event
return gif_buffer
# Route for serving the index.html file
@app.route("/")
def index():
return render_template(
"index.html"
) # This looks for 'index.html' inside the 'templates/' directory
# Endpoint to receive a frame and timestamp
@app.route("/receive_frame", methods=["POST"])
def receive_frame():
global current_gif_url
frame = request.files.get("frame")
timestamp = int(request.form.get("timestamp"))
if not frame or not timestamp:
return jsonify({"error": "Missing frame or timestamp"}), 400
# Convert frame to numpy array
frame_bytes = frame.read()
np_frame = np.frombuffer(frame_bytes, np.uint8)
img = cv2.imdecode(np_frame, cv2.IMREAD_COLOR)
# if img is black the we skip
if np.all(img == 0):
# Send the modified image back to the client
return jsonify({"gif_url": None, "gesture_name": None})
# Add frame and timestamp to the buffer
frame_buffer[timestamp] = img.copy()
timestamps.append(timestamp)
clean_frame_buffer()
# Predict head gesture based on the frame and timestamp
_, _, last_event = predict_head_gesture(img, timestamp)
gif_filename = None
gesture_name = None
# If an event is detected, create a GIF and return it
for track_id, event in last_event.items():
gif_to_draw = get_gif_clip(track_id, event)
if gif_to_draw:
gif_filename = f"static/gifs/gesture_gif_{event.end}.gif"
gesture_name = event.label.capitalize()
# check if the gif already exist
if not os.path.exists(gif_filename):
with open(gif_filename, "wb") as f:
f.write(gif_to_draw.getvalue())
file = "/" + gif_filename if gif_filename else None
return jsonify({"gif_url": file, "gesture_name": gesture_name})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000)