forked from avehtari/ROS-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheights.R
158 lines (147 loc) · 6.36 KB
/
heights.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#' ---
#' title: "Regression and Other Stories: Pearson and Lee Heights"
#' author: "Andrew Gelman, Jennifer Hill, Aki Vehtari"
#' date: "`r format(Sys.Date())`"
#' output:
#' html_document:
#' theme: readable
#' toc: true
#' toc_depth: 2
#' toc_float: true
#' code_download: true
#' ---
#'
#' The heredity of height. Published in 1903 by Karl Pearson and Alice
#' Lee. See Chapter 6 in Regression and Other Stories.
#'
#' -------------
#'
#+ setup, include=FALSE
knitr::opts_chunk$set(message=FALSE, error=FALSE, warning=FALSE, comment=NA)
# switch this to TRUE to save figures in separate files
savefigs <- FALSE
#' #### Load packages
library("rprojroot")
root<-has_file(".ROS-Examples-root")$make_fix_file()
library("rstanarm")
library("HistData")
#' #### Load data
heights <- read.table(root("PearsonLee/data","Heights.txt"), header=TRUE)
n <- nrow(heights)
head(heights)
#' #### Linear regression
fit_1 <- stan_glm(daughter_height ~ mother_height, data = heights, refresh = 0)
#+
print(fit_1, digits=2)
a_hat <- coef(fit_1)[1]
b_hat <- coef(fit_1)[2]
#' #### Plot mothers' and daughters' heights
#+ eval=FALSE, include=FALSE
if (savefigs) pdf(root("PearsonLee/figs","PearsonLee1.pdf"), height=4.5, width=4.5)
#+
par(mar=c(3, 3, 2, 1), mgp=c(1.7, .5, 0), tck=-.01)
par(pty="s")
rng <- range(heights$mother_height, heights$daughter_height)
plot(heights$mother_height, heights$daughter_height, xlab="Mother's height (inches)", ylab="Adult daughter's height (inches)", bty="l", xlim=rng, ylim=rng, xaxt="n", yaxt="n", pch=20, cex=.5)
x <- seq(48, 84, 6)
axis(1, x)
axis(2, x)
for (i in x){
abline(h=i, col="gray70", lty=2)
abline(v=i, col="gray70", lty=2)
}
#+ eval=FALSE, include=FALSE
if (savefigs) dev.off()
#' #### Plot mothers' and daughters' heights with jitter
#+ eval=FALSE, include=FALSE
if (savefigs) pdf(root("PearsonLee/figs","PearsonLee2.pdf"), height=4.5, width=4.5)
#+
par(mar=c(3, 3, 2, 1), mgp=c(1.7, .5, 0), tck=-.01, pty="s")
plot(jitter(heights$mother_height, 0.5), jitter(heights$daughter_height), xlab="Mother's height (inches)", ylab="Adult daughter's height (inches)", bty="l", xlim=rng, ylim=rng, xaxt="n", yaxt="n", pch=20, cex=.2)
x <- seq(48, 84, 6)
axis(1, x)
axis(2, x)
for (i in x){
abline(h=i, col="gray70", lty=2)
abline(v=i, col="gray70", lty=2)
}
#+ eval=FALSE, include=FALSE
if (savefigs) dev.off()
#' #### Plot mothers' and daughters' heights and fitted regression line
#+ eval=FALSE, include=FALSE
if (savefigs) pdf(root("PearsonLee/figs","PearsonLee3a.pdf"), height=4.5, width=4.5)
#+
par(mar=c(3, 3, 2, .1), mgp=c(2, .5, 0), tck=-.01, pty="s")
plot(jitter(heights$mother_height, 0.5), jitter(heights$daughter_height), xlab="Mother's height (inches)", ylab="Adult daughter's height (inches)", bty="l", xlim=c(rng[1], rng[2]), ylim=rng, xaxt="n", yaxt="n", pch=20, cex=.2)
x <- seq(48, 84, 6)
axis(1, x)
axis(2, x)
for (i in x){
abline(h=i, col="gray70", lty=2)
abline(v=i, col="gray70", lty=2)
}
abline(a_hat, b_hat, lwd=3, col="white")
abline(a_hat, b_hat, lwd=1.5)
points(mean(heights$mother_height), mean(heights$daughter_height), pch=20, cex=2, col="white")
mtext("Mothers' and daughters' heights,\naverage of data, and fitted regression line", side=3, line=0)
#+ eval=FALSE, include=FALSE
if (savefigs) dev.off()
#' #### Plot fitted regression line and the average of the data
#+ eval=FALSE, include=FALSE
if (savefigs) pdf(root("PearsonLee/figs","PearsonLee3b.pdf"), height=4.5, width=4.5)
#+
par(mar=c(3, 3, 2, .1), mgp=c(2, .5, 0), tck=-.01, pty="s")
plot(jitter(heights$mother_height, 0.5), jitter(heights$daughter_height), xlab="Mother's height (inches)", ylab="Adult daughter's height (inches)", bty="l", xlim=c(rng[1], rng[2]), ylim=rng, xaxt="n", yaxt="n", pch=20, cex=.2, type="n")
x <- seq(54, 72, 6)
axis(1, x)
axis(2, x)
abline(a_hat, b_hat, lwd=3, col="white")
abline(a_hat, b_hat, lwd=1.5)
lines(rep(mean(heights$mother_height), 2), c(0, mean(heights$daughter_height)), lwd=.5)
lines(c(0, mean(heights$mother_height)), rep(mean(heights$daughter_height), 2), lwd=.5)
axis(1, mean(heights$mother_height), round(mean(heights$mother_height), 1))
axis(2, mean(heights$daughter_height), round(mean(heights$daughter_height), 1))
text(68, 64, paste("y =", round(a_hat), "+", round(b_hat, 2), "x"))
text(63, 62, paste("Equivalently, y = ", round(mean(heights$daughter_height), 1), " + ", round(b_hat, 2), " * (x - ", round(mean(heights$mother_height), 1), ")", sep=""))
points(mean(heights$mother_height), mean(heights$daughter_height), pch=20, cex=2)
mtext("The fitted regression line and the average of the data ", side=3, line=1)
#+ eval=FALSE, include=FALSE
if (savefigs) dev.off()
#' #### Plot fitted regression line
#+ eval=FALSE, include=FALSE
if (savefigs) pdf(root("PearsonLee/figs","PearsonLee4a.pdf"), height=4, width=4.5)
#+
par(mar=c(3, 3, 2, .1), mgp=c(2, .5, 0), tck=-.01)
plot(c(0, 100), c(0, 100), xlab="", ylab="", xaxt="n", yaxt="n", bty="n", type="n")
abline(h=0)
abline(v=0)
axis(2, round(a_hat), tck=0, las=1)
axis(1, 0, tck=0, las=1, line=-.4)
axis(2, 0, tck=0, las=1)
abline(a_hat, b_hat, lwd=2)
text(40, 40, paste("slope", round(b_hat, 2)))
mtext(paste("The line, y =", round(a_hat), "+", round(b_hat, 2), "x"), side=3, line=0)
#+ eval=FALSE, include=FALSE
if (savefigs) dev.off()
#' #### Plot data and fitted regression line in the context of the data
#+ eval=FALSE, include=FALSE
if (savefigs) pdf(root("PearsonLee/figs","PearsonLee4b.pdf"), height=4, width=4.5)
#+
par(mar=c(3, 3, 2, .1), mgp=c(2, .5, 0), tck=-.01)
plot(c(0, 100), c(0, 100), xlab="", ylab="", xaxt="n", yaxt="n", bty="n", type="n")
abline(h=0)
abline(v=0)
axis(2, round(a_hat), tck=0, las=1)
points(jitter(heights$mother_height, 0.5), jitter(heights$daughter_height), pch=20, cex=.2)
abline(a_hat, b_hat, lwd=3, col="white")
abline(a_hat, b_hat, lwd=1.5)
axis(1, 0, tck=0, las=1, line=-.4)
axis(2, 0, tck=0, las=1)
axis(1, mean(heights$mother_height), round(mean(heights$mother_height), 1), tck=0, las=1, line=-.4)
axis(2, mean(heights$daughter_height), round(mean(heights$daughter_height), 1), tck=0, las=1, line=-.7)
lines(rep(mean(heights$mother_height), 2), c(0, mean(heights$daughter_height)), lwd=.5)
lines(c(0, mean(heights$mother_height)), rep(mean(heights$daughter_height), 2), lwd=.5)
text(40, 43, paste("slope", round(b_hat, 2)), cex=.9)
mtext(paste("The line, y =", round(a_hat), "+", round(b_hat, 2), "x, in the context of the data"), side=3, line=0)
#+ eval=FALSE, include=FALSE
if (savefigs) dev.off()