-
Notifications
You must be signed in to change notification settings - Fork 990
/
Copy pathHuffmanTree.cs
323 lines (278 loc) · 9.55 KB
/
HuffmanTree.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// The content of the class is borrowed from DEFLATE64 support implementation for DotNetZip
// which on its part contains modified code from the .NET Core Libraries (CoreFX and System.IO.Compression/DeflateManaged)
// where deflate64 decompression is implemented.
// https://github.com/haf/DotNetZip.Semverd/blob/master/src/Zip.Shared/Deflate64/HuffmanTree.cs
using System.Diagnostics;
using System.IO;
namespace ICSharpCode.SharpZipLib.Zip.Deflate64
{
// Strictly speaking this class is not a HuffmanTree, this class is
// a lookup table combined with a HuffmanTree. The idea is to speed up
// the lookup for short symbols (they should appear more frequently ideally.)
// However we don't want to create a huge table since it might take longer to
// build the table than decoding (Deflate usually generates new tables frequently.)
// Jean-loup Gailly and Mark Adler gave a very good explanation about this.
// The full text (algorithm.txt) can be found inside
// ftp://ftp.uu.net/pub/archiving/zip/zlib/zlib.zip.
// Following paper explains decoding in details:
// Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
// Comm. ACM, 33,4, April 1990, pp. 449-459.
internal sealed class HuffmanTree
{
internal const int MaxLiteralTreeElements = 288;
internal const int MaxDistTreeElements = 32;
internal const int EndOfBlockCode = 256;
internal const int NumberOfCodeLengthTreeElements = 19;
private readonly int _tableBits;
private readonly short[] _table;
private readonly short[] _left;
private readonly short[] _right;
private readonly byte[] _codeLengthArray;
#if DEBUG
private uint[] _codeArrayDebug;
#endif
private readonly int _tableMask;
// huffman tree for static block
public static HuffmanTree StaticLiteralLengthTree { get; } = new HuffmanTree(GetStaticLiteralTreeLength());
public static HuffmanTree StaticDistanceTree { get; } = new HuffmanTree(GetStaticDistanceTreeLength());
public HuffmanTree(byte[] codeLengths)
{
Debug.Assert(
codeLengths.Length == MaxLiteralTreeElements ||
codeLengths.Length == MaxDistTreeElements ||
codeLengths.Length == NumberOfCodeLengthTreeElements,
"we only expect three kinds of Length here");
_codeLengthArray = codeLengths;
if (_codeLengthArray.Length == MaxLiteralTreeElements)
{
// bits for Literal/Length tree table
_tableBits = 9;
}
else
{
// bits for distance tree table and code length tree table
_tableBits = 7;
}
_tableMask = (1 << _tableBits) - 1;
_table = new short[1 << _tableBits];
// I need to find proof that left and right array will always be
// enough. I think they are.
_left = new short[2 * _codeLengthArray.Length];
_right = new short[2 * _codeLengthArray.Length];
CreateTable();
}
// Generate the array contains huffman codes lengths for static huffman tree.
// The data is in RFC 1951.
private static byte[] GetStaticLiteralTreeLength()
{
byte[] literalTreeLength = new byte[MaxLiteralTreeElements];
for (int i = 0; i <= 143; i++)
literalTreeLength[i] = 8;
for (int i = 144; i <= 255; i++)
literalTreeLength[i] = 9;
for (int i = 256; i <= 279; i++)
literalTreeLength[i] = 7;
for (int i = 280; i <= 287; i++)
literalTreeLength[i] = 8;
return literalTreeLength;
}
private static byte[] GetStaticDistanceTreeLength()
{
byte[] staticDistanceTreeLength = new byte[MaxDistTreeElements];
for (int i = 0; i < MaxDistTreeElements; i++)
{
staticDistanceTreeLength[i] = 5;
}
return staticDistanceTreeLength;
}
// Reverse 'length' of the bits in code
private static uint BitReverse(uint code, int length)
{
uint new_code = 0;
Debug.Assert(length > 0 && length <= 16, "Invalid len");
do
{
new_code |= (code & 1);
new_code <<= 1;
code >>= 1;
} while (--length > 0);
return new_code >> 1;
}
// Calculate the huffman code for each character based on the code length for each character.
// This algorithm is described in standard RFC 1951
private uint[] CalculateHuffmanCode()
{
uint[] bitLengthCount = new uint[17];
foreach (int codeLength in _codeLengthArray)
{
bitLengthCount[codeLength]++;
}
bitLengthCount[0] = 0; // clear count for length 0
uint[] nextCode = new uint[17];
uint tempCode = 0;
for (int bits = 1; bits <= 16; bits++)
{
tempCode = (tempCode + bitLengthCount[bits - 1]) << 1;
nextCode[bits] = tempCode;
}
uint[] code = new uint[MaxLiteralTreeElements];
for (int i = 0; i < _codeLengthArray.Length; i++)
{
int len = _codeLengthArray[i];
if (len > 0)
{
code[i] = BitReverse(nextCode[len], len);
nextCode[len]++;
}
}
return code;
}
private void CreateTable()
{
uint[] codeArray = CalculateHuffmanCode();
#if DEBUG
_codeArrayDebug = codeArray;
#endif
short avail = (short)_codeLengthArray.Length;
for (int ch = 0; ch < _codeLengthArray.Length; ch++)
{
// length of this code
int len = _codeLengthArray[ch];
if (len > 0)
{
// start value (bit reversed)
int start = (int)codeArray[ch];
if (len <= _tableBits)
{
// If a particular symbol is shorter than nine bits,
// then that symbol's translation is duplicated
// in all those entries that start with that symbol's bits.
// For example, if the symbol is four bits, then it's duplicated
// 32 times in a nine-bit table. If a symbol is nine bits long,
// it appears in the table once.
//
// Make sure that in the loop below, code is always
// less than table_size.
//
// On last iteration we store at array index:
// initial_start_at + (locs-1)*increment
// = initial_start_at + locs*increment - increment
// = initial_start_at + (1 << tableBits) - increment
// = initial_start_at + table_size - increment
//
// Therefore we must ensure:
// initial_start_at + table_size - increment < table_size
// or: initial_start_at < increment
//
int increment = 1 << len;
if (start >= increment)
{
throw new InvalidDataException("InvalidHuffmanData");
}
// Note the bits in the table are reverted.
int locs = 1 << (_tableBits - len);
for (int j = 0; j < locs; j++)
{
_table[start] = (short)ch;
start += increment;
}
}
else
{
// For any code which has length longer than num_elements,
// build a binary tree.
int overflowBits = len - _tableBits; // the nodes we need to respent the data.
int codeBitMask = 1 << _tableBits; // mask to get current bit (the bits can't fit in the table)
// the left, right table is used to repesent the
// the rest bits. When we got the first part (number bits.) and look at
// tbe table, we will need to follow the tree to find the real character.
// This is in place to avoid bloating the table if there are
// a few ones with long code.
int index = start & ((1 << _tableBits) - 1);
short[] array = _table;
do
{
short value = array[index];
if (value == 0)
{
// set up next pointer if this node is not used before.
array[index] = (short)-avail; // use next available slot.
value = (short)-avail;
avail++;
}
if (value > 0)
{
// prevent an IndexOutOfRangeException from array[index]
throw new InvalidDataException("InvalidHuffmanData");
}
Debug.Assert(value < 0, "CreateTable: Only negative numbers are used for tree pointers!");
if ((start & codeBitMask) == 0)
{
// if current bit is 0, go change the left array
array = _left;
}
else
{
// if current bit is 1, set value in the right array
array = _right;
}
index = -value; // go to next node
codeBitMask <<= 1;
overflowBits--;
} while (overflowBits != 0);
array[index] = (short)ch;
}
}
}
}
// This function will try to get enough bits from input and
// try to decode the bits.
// If there are no enought bits in the input, this function will return -1.
public int GetNextSymbol(InputBuffer input)
{
// Try to load 16 bits into input buffer if possible and get the bitBuffer value.
// If there aren't 16 bits available we will return all we have in the
// input buffer.
uint bitBuffer = input.TryLoad16Bits();
if (input.AvailableBits == 0)
{ // running out of input.
return -1;
}
// decode an element
int symbol = _table[bitBuffer & _tableMask];
if (symbol < 0)
{ // this will be the start of the binary tree
// navigate the tree
uint mask = (uint)1 << _tableBits;
do
{
symbol = -symbol;
if ((bitBuffer & mask) == 0)
symbol = _left[symbol];
else
symbol = _right[symbol];
mask <<= 1;
} while (symbol < 0);
}
int codeLength = _codeLengthArray[symbol];
// huffman code lengths must be at least 1 bit long
if (codeLength <= 0)
{
throw new InvalidDataException("InvalidHuffmanData");
}
//
// If this code is longer than the # bits we had in the bit buffer (i.e.
// we read only part of the code), we can hit the entry in the table or the tree
// for another symbol. However the length of another symbol will not match the
// available bits count.
if (codeLength > input.AvailableBits)
{
// We already tried to load 16 bits and maximum length is 15,
// so this means we are running out of input.
return -1;
}
input.SkipBits(codeLength);
return symbol;
}
}
}