-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
137 lines (116 loc) · 3.82 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import json
import os
from pathlib import Path
import torch
import pandas as pd
from tqdm import tqdm
import src.model as module_model
from src.trainer import Trainer
from src.utils import ROOT_PATH
from src.utils.data_loading import get_dataloaders
from src.utils.parse_config import ConfigParser
DEFAULT_CHECKPOINT_PATH = ROOT_PATH / "default_test_model" / "checkpoint.pth"
def main(config, out_file):
logger = config.get_logger("test")
# define cpu or gpu if possible
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# tokenizer
tokenizer = config.get_tokenizer()
# setup data_loader instances
dataloaders = get_dataloaders(config, tokenizer)
# build model architecture
model = config.init_obj(config["arch"], module_model, num_embeddings=len(tokenizer))
logger.info(model)
logger.info("Loading checkpoint: {} ...".format(config.resume))
checkpoint = torch.load(config.resume, map_location=device)
state_dict = checkpoint["state_dict"]
if config["n_gpu"] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
model = model.to(device)
model.eval()
with torch.no_grad():
for key in ['yelp']:
logger.info(f'{key}:')
results = []
for batch_num, batch in enumerate(tqdm(dataloaders[key])):
batch = Trainer.move_batch_to_device(batch, device)
output = model(**batch)
if type(output) is dict:
batch.update(output)
else:
batch["logits"] = output
batch["argmax"] = batch["logits"].argmax(-1)
for i in range(len(batch["text"])):
argmax = int(batch["argmax"][i].detach().cpu().numpy())
results.append(argmax)
with Path(f'{key}_{out_file}').open("w") as f:
for pred in results:
f.write(str(pred) + '\n')
if __name__ == "__main__":
args = argparse.ArgumentParser(description="PyTorch Template")
args.add_argument(
"-c",
"--config",
default=None,
type=str,
help="config file path (default: None)",
)
args.add_argument(
"-r",
"--resume",
default=str(DEFAULT_CHECKPOINT_PATH.absolute().resolve()),
type=str,
help="path to latest checkpoint (default: None)",
)
args.add_argument(
"-d",
"--device",
default=None,
type=str,
help="indices of GPUs to enable (default: all)",
)
args.add_argument(
"-o",
"--output",
default="output.txt",
type=str,
help="File to write results (.json)",
)
args.add_argument(
"-t",
"--test-data-folder",
default=None,
type=str,
help="Path to dataset",
)
args.add_argument(
"-b",
"--batch-size",
default=20,
type=int,
help="Test dataset batch size",
)
args.add_argument(
"-j",
"--jobs",
default=1,
type=int,
help="Number of workers for test dataloader",
)
args = args.parse_args()
# set GPUs
if args.device is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = args.device
# first, we need to obtain config with model parameters
# we assume it is located with checkpoint in the same folder
model_config = Path(args.resume).parent / "config.json"
with model_config.open() as f:
config = ConfigParser(json.load(f), resume=args.resume)
# update with addition configs from `args.config` if provided
if args.config is not None:
with Path(args.config).open() as f:
config.config.update(json.load(f))
main(config, args.output)