-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
275 lines (247 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# -*- coding: utf-8 -*-
#import argparse
import os
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import random
import torch
#import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
#from tqdm import tqdm
from PIL import Image
from data import MyDataset
from tqdm import trange
import warnings
from torch.utils.tensorboard import SummaryWriter
warnings.filterwarnings("ignore")
# predict frame2 and visualize feature maps
def run_test(model, testset, args, device, epoch, mode='test'):
def diff2img(diff, need_check=True): # [-2,2] (3,128,128) -> [0,255] (128,128,3)
if need_check:
assert np.max(diff) <= 2. and np.min(diff) >= -2.
d = ((diff + 2.) * 127.5 / 2).astype(np.uint8)
return np.transpose(d, (1,2,0))
def frame2img(fr, need_check=True): # [-1,1] (3,128,128) -> [0,255] (128,128,3)
if need_check:
assert np.max(fr) <= 1. and np.min(fr) >= -1.
d = ((fr + 1.) * 127.5).astype(np.uint8)
return np.transpose(d, (1,2,0))
def normalize(a):
p = np.abs(a)
mn, mx = np.min(p), np.max(p)
return ((p - mn) / (mx - mn) * 255).astype(np.uint8)
# visualize feature maps
def fig2data(fig):
# draw the renderer
fig.canvas.draw()
# Get the RGBA buffer from the figure
w,h = fig.canvas.get_width_height()
buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8)
buf.shape = (w, h, 4)
# canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
buf = np.roll(buf, 3, axis = 2)
return buf
def fig2img(fig):
buf = fig2data(fig)
w, h, d = buf.shape
return Image.frombytes("RGBA", (w, h), buf.tostring())
def map2img(mp):
plt.close('all')
figure = plt.figure(figsize=(8,8))
plot = figure.add_subplot(111)
plot.axis('off')
plot.matshow(mp)
im = fig2img(figure).resize((args.size, args.size)).convert('L').convert('RGB')
return np.asarray(im)[:,:,0:3]
model.eval()
#layout: im, extractor_pred, im_pred, feature map (t)
# diff, diff_extractor_pred, diff_pred, feature map (t+1)
img_save = np.zeros([args.size * args.test_num * 2, args.size * 4, 3], dtype=np.uint8)
for i in range(args.test_num):
idx = random.randint(0, len(testset) - 1)
sample, actions = testset.__getitem__(idx)
frame0 = sample[0].to(device)
frame1 = sample[1].to(device)
frame2 = sample[2].to(device)
diff_img = (sample[2] - sample[1]).numpy()
img_save[args.size*(2*i+1): args.size*(2*i+2), 0: args.size, :] = diff2img(diff_img)
img_save[args.size*(2*i): args.size*(2*i+1), 0: args.size, :] = frame2img(sample[2].numpy())
pred_g, outputs_vd, _ = model.forward(frame0.unsqueeze(0), frame1.unsqueeze(0), frame2.unsqueeze(0))
pred_vd = outputs_vd['pred'].squeeze(0).cpu().detach().numpy()
pred_g = pred_g.squeeze(0).cpu().detach().numpy()
img_save[args.size*(2*i+1): args.size*(2*i+2), args.size: args.size*2, :] = \
diff2img(pred_vd - sample[1].numpy(), need_check=False)
img_save[args.size*(2*i+1): args.size*(2*i+2), args.size*2: args.size*3, :] = \
diff2img(pred_g - sample[1].numpy(), need_check=False)
img_save[args.size*(2*i): args.size*(2*i+1), args.size: args.size*2, :] = \
frame2img(pred_vd, need_check=False)
img_save[args.size*(2*i): args.size*(2*i+1), args.size*2: args.size*3, :] = \
frame2img(pred_g, need_check=False)
maps = outputs_vd['features'].squeeze(0).cpu().detach().numpy()
maps_after = outputs_vd['features_after'].squeeze(0).cpu().detach().numpy()
im = map2img(maps[0])
img_save[args.size*(i*2): args.size*(i*2+1), args.size*(3): args.size*(4), :] = im
im = map2img(maps_after[0])
img_save[args.size*(i*2+1): args.size*(i*2+2), args.size*(3): args.size*(4), :] = im
Image.fromarray(img_save).save(os.path.join(args.save_path, '{}_{}.jpg'.format(mode, epoch)))
model.train()
def main(args):
if args.gpu == '-1':
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(args.gpu))
plus = '_plus' if args.plus else ''
contrastive = f'_contrastive_{args.contrastive_coeff}' if args.use_contrastive else ''
agents = f'_agents_{args.n_agent}' if args.n_agent > 1 else ''
graph = '_graph' if not args.no_graph else ''
landmark = f'_landmark_{args.landmark_coeff}' if args.use_landmark else ''
args.save_path = f'checkpoint_{args.size}{plus}{contrastive}{agents}{graph}{landmark}_{args.seed}'
args.test_model_path = args.save_path + f'/model_{args.epochs - 1}.pth'
args.test_save_path = f'test_{args.size}{plus}{contrastive}{agents}{graph}{landmark}_{args.seed}'
if args.use_contrastive:
assert args.n_agent > 1, 'Make sure the number of agent is more \
than 1 when using contrastive loss'
if args.plus:
from models_plus import Model
else:
from models import Model
if args.save_path and not os.path.exists(args.save_path):
os.makedirs(args.save_path)
data, loaders = {}, {}
data['train'] = MyDataset(
data_path=args.data_path,
mode='train',
fmt = args.img_fmt,
zoom = args.zoom,
size=args.size
)
data['validate'] = MyDataset(
data_path=args.data_path,
mode='validate',
fmt = args.img_fmt,
zoom = args.zoom,
size=args.size
)
data['test'] = MyDataset(
data_path=args.data_path,
mode='test',
fmt = args.img_fmt,
zoom = args.zoom,
size=args.size
)
loaders['train'] = DataLoader(
dataset=data['train'],
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers
)
# print('dataset loaded, train {}, validate {}, test {}'.format(len(data['train']), len(data['validate']), len(data['test'])))
model = Model(map_size=args.map_size, img_size=args.size, num_maps=args.num_maps, n_agent=args.n_agent,\
translate_only=args.translate_only, args=args).to(device)
if args.deep_speed:
model_engine, optimizer, _, _ = deepspeed.initialize(
args=args, model=model,
model_parameters=filter(lambda p: p.requires_grad, model.parameters()))
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
model.train()
# print('start training ...')
#run_test(model, data['test'], args, device, 0, 'test')
# run_test(model, data['test'], args, device, 0, 'validate')
writer = SummaryWriter(args.test_save_path + '/logs')
for epoch in trange(args.epochs):
n_iter = 0
# print('start epoch {}'.format(epoch))
train_losses = []
losses_recon_vd, losses_recon_g, contrastive_losses = [], [], []
centroid_losses, landmark_losses = [], []
for batch, actions in loaders['train']:
n_iter += 1
if args.deep_speed:
frame0, frame1, frame2 = batch[0].to(model_engine.local_rank), batch[1].to(
model_engine.local_rank), batch[2].to(model_engine.local_rank)
pred_g, outputs_vd, contrastive_loss, landmark_loss, centroid_loss = model_engine(frame0, frame1, frame2)
else:
frame0 = batch[0].to(device)
frame1 = batch[1].to(device)
frame2 = batch[2].to(device)
optimizer.zero_grad()
pred_g, outputs_vd, contrastive_loss, landmark_loss, centroid_loss = model.forward(frame0, frame1, frame2)
loss_recon_vd = F.mse_loss(outputs_vd['pred'], frame2)
#loss_KL = -0.5 * torch.mean(1 + outputs_vd["logvar"] - outputs_vd["mean"].pow(2) - outputs_vd["logvar"].exp())
loss_recon_g = F.mse_loss(pred_g, frame2)
loss = (loss_recon_vd + loss_recon_g) * args.loss_scale
loss += args.contrastive_coeff * contrastive_loss
loss += centroid_loss
loss += args.landmark_coeff * landmark_loss
if args.deep_speed:
model_engine.backward(loss)
model_engine.step()
else:
loss.backward()
optimizer.step()
train_losses.append(loss.item())
losses_recon_vd.append(loss_recon_vd.item())
losses_recon_g.append(loss_recon_g.item())
if args.use_contrastive and args.n_agent > 1:
contrastive_losses.append(contrastive_loss.item())
if args.use_landmark and args.n_agent > 1:
centroid_losses.append(centroid_loss.item())
landmark_losses.append(landmark_loss.item())
# if n_iter % args.print_step == 0:
# print('epoch {}, step {}/{}, obj extractor loss: {}, interaction learner loss: {}, total loss: {}'.format(
# epoch, n_iter, len(data['train']) // args.batch, loss_recon_vd, loss_recon_g, loss))
writer.add_scalar('Train Loss', sum(train_losses) / len(train_losses), global_step=epoch)
writer.add_scalar('Train VD Loss', sum(losses_recon_vd) / len(losses_recon_vd), global_step=epoch)
writer.add_scalar('Train G Loss', sum(losses_recon_g) / len(losses_recon_g), global_step=epoch)
if args.use_contrastive:
writer.add_scalar('Train Contrastive Loss', sum(contrastive_losses) / len(contrastive_losses), global_step=epoch)
if args.use_landmark:
writer.add_scalar('Train Centroid Loss', sum(centroid_losses) / len(centroid_losses), global_step=epoch)
writer.add_scalar('Train Landmark Loss', sum(landmark_losses) / len(landmark_losses), global_step=epoch)
if (epoch + 1) % args.save_epoch == 0:
torch.save(model.state_dict(), os.path.join(args.save_path, 'model_{}.pth'.format(epoch)))
# if (epoch + 1) % args.test_epoch == 0:
# #run_test(model, data['test'], args, device, epoch, 'test')
# run_test(model, data['test'], args, device, epoch, 'validate')
if (epoch + 1) % args.validate_epoch == 0:
loss1, loss2, loss3, loss4, loss5 = 0., 0., 0., 0., 0.
model.eval()
for i in range(data['validate'].__len__()):
sample, actions = data['validate'].__getitem__(i)
frame0 = sample[0].to(device)
frame1 = sample[1].to(device)
frame2 = sample[2].to(device)
pred_g, outputs_vd, contrastive_loss, landmark_loss, centroid_loss = model.forward(frame0.unsqueeze(0), frame1.unsqueeze(0), frame2.unsqueeze(0))
loss1 += F.mse_loss(outputs_vd['pred'], frame2).item()
loss2 += F.mse_loss(pred_g, frame2).item()
if args.use_contrastive:
loss3 += contrastive_loss.item()
if args.use_landmark:
loss4 += landmark_loss.item()
loss5 += centroid_loss.item()
del pred_g, outputs_vd, frame0, frame1, frame2
model.train()
# print('validate: epoch {}, obj extractor loss: {}, interaction learner loss: {}'.format(
# epoch, loss1, loss2))
writer.add_scalar('Valid VD Loss', loss1 / data['validate'].__len__(), global_step=epoch)
writer.add_scalar('Valid G Loss', loss2 / data['validate'].__len__(), global_step=epoch)
if args.use_contrastive:
writer.add_scalar('Valid Contrastive Loss', loss3 / data['validate'].__len__(), global_step=epoch)
if args.use_landmark:
writer.add_scalar('Valid Landmark Loss', loss4 / data['validate'].__len__(), global_step=epoch)
writer.add_scalar('Valid Centroid Loss', loss5 / data['validate'].__len__(), global_step=epoch)
if __name__ == '__main__':
from config import parser
args = parser.parse_args()
if args.deep_speed:
import deepspeed
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
args.deepspeeed_config = 'deepspeed_config.json'
# print(args)
main(args)