|
| 1 | +import torch |
| 2 | +import torchhd |
| 3 | +from torchhd.datasets.isolet import ISOLET |
| 4 | + |
| 5 | +classifiers = [ |
| 6 | + "Vanilla", |
| 7 | + "AdaptHD", |
| 8 | + "OnlineHD", |
| 9 | + "NeuralHD", |
| 10 | + "DistHD", |
| 11 | + "CompHD", |
| 12 | + "SparseHD", |
| 13 | + "QuantHD", |
| 14 | + "LeHDC", |
| 15 | + "IntRVFL", |
| 16 | +] |
| 17 | + |
| 18 | +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 19 | +print("Using {} device".format(device)) |
| 20 | + |
| 21 | +DIMENSIONS = 1024 # number of hypervector dimensions |
| 22 | +BATCH_SIZE = 12 # for GPUs with enough memory we can process multiple images at ones |
| 23 | + |
| 24 | +train_ds = ISOLET("../data", train=True, download=True) |
| 25 | +train_ld = torch.utils.data.DataLoader(train_ds, batch_size=BATCH_SIZE, shuffle=True) |
| 26 | + |
| 27 | +test_ds = ISOLET("../data", train=False, download=True) |
| 28 | +test_ld = torch.utils.data.DataLoader(test_ds, batch_size=BATCH_SIZE, shuffle=False) |
| 29 | + |
| 30 | +num_features = train_ds[0][0].size(-1) |
| 31 | +num_classes = len(train_ds.classes) |
| 32 | + |
| 33 | +std, mean = torch.std_mean(train_ds.data, dim=0, keepdim=False) |
| 34 | + |
| 35 | + |
| 36 | +def transform(sample): |
| 37 | + return (sample - mean) / std |
| 38 | + |
| 39 | + |
| 40 | +train_ds.transform = transform |
| 41 | +test_ds.transform = transform |
| 42 | + |
| 43 | +params = { |
| 44 | + "Vanilla": {}, |
| 45 | + "AdaptHD": { |
| 46 | + "epochs": 10, |
| 47 | + }, |
| 48 | + "OnlineHD": { |
| 49 | + "epochs": 10, |
| 50 | + }, |
| 51 | + "NeuralHD": { |
| 52 | + "epochs": 10, |
| 53 | + "regen_freq": 5, |
| 54 | + }, |
| 55 | + "DistHD": { |
| 56 | + "epochs": 10, |
| 57 | + "regen_freq": 5, |
| 58 | + }, |
| 59 | + "CompHD": {}, |
| 60 | + "SparseHD": { |
| 61 | + "epochs": 10, |
| 62 | + }, |
| 63 | + "QuantHD": { |
| 64 | + "epochs": 10, |
| 65 | + }, |
| 66 | + "LeHDC": { |
| 67 | + "epochs": 10, |
| 68 | + }, |
| 69 | + "IntRVFL": {}, |
| 70 | +} |
| 71 | + |
| 72 | +for classifier in classifiers: |
| 73 | + print() |
| 74 | + print(classifier) |
| 75 | + |
| 76 | + model_cls = getattr(torchhd.classifiers, classifier) |
| 77 | + model: torchhd.classifiers.Classifier = model_cls( |
| 78 | + num_features, DIMENSIONS, num_classes, device=device, **params[classifier] |
| 79 | + ) |
| 80 | + |
| 81 | + model.fit(train_ld) |
| 82 | + accuracy = model.accuracy(test_ld) |
| 83 | + print(f"Testing accuracy of {(accuracy * 100):.3f}%") |
0 commit comments