-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_tools.py
155 lines (116 loc) · 4.24 KB
/
data_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Copyright (c) 2024 by [email protected] All Rights Reserved.
Author: [email protected]
Date: 2024-08-31 19:22:36
Description:
"""
import os
import random
import torch
import subprocess
import collections
import numpy as np
from transformers import BertTokenizer, ErnieModel
from torch.utils.data import DataLoader
CUR_DIR = os.path.abspath(os.path.dirname(__file__))
class Reader():
label1 = []
label2 = []
def __init__(self, train_path = "", max_token = 64, shuffle=False, tokenizer=None):
self.label1_index = {}
for index, item in enumerate(self.label1):
self.label1_index[item] = index
self.label2_index = {}
for index, item in enumerate(self.label2):
self.label2_index[item] = index
self.shuffle = shuffle
self.max_token = max_token
self.tokenizer = tokenizer
self.reader = os.popen(f"cat {train_path}")
self.deque = collections.deque()
self._lines = int(subprocess.getoutput(f"wc -l {train_path}").strip().split(" ")[0])
print(self._lines)
def __getitem__(self, index):
if not self.deque:
docs = self.reader.read(1024 * 1024 * 1).splitlines()
docs = self.parse_data(docs)
self.deque.extend(docs)
item = self.deque.popleft()
doc = item[0]
label1 = item[1]
label2_list = item[2:]
doc = "fxbnlu" + doc
label1_index = self.label1_index[label1]
# label2_index = self.label2_index[label2]
label2_flag = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
for label2 in label2_list:
if label2 in self.label2_index:
index_flag = self.label2_index[label2]
label2_flag[index_flag] = 1
return doc, label1_index, label2_flag
def parse_data(self, docs):
"""get data index"""
docs = [x.split("\t") for x in docs]
if self.shuffle:
random.shuffle(docs)
data = []
for item in docs:
if len(item) >= 3 and item[1] in self.label1_index and item[2] in self.label2_index:
data.append(item)
else:
data.append([item[0], self.label1[0], self.label2[0]])
return data
def __len__(self):
return self._lines
def collate_fn(self, batch):
"""pad batch"""
doc_list = [item[0] for item in batch]
labels1 = [item[1] for item in batch]
labels2 = [item[2] for item in batch]
max_len = max(len(inst) for inst in doc_list)
max_len = min(max_len, self.max_token)
srcs = self.tokenizer(
doc_list,
padding="max_length",
truncation=True,
max_length=max_len,
add_special_tokens=True,
return_tensors="pt",
return_attention_mask=True,
)
input_ids = srcs.input_ids
attention_mask = srcs.attention_mask
labels1 = torch.from_numpy(np.array(labels1))
labels2 = torch.from_numpy(np.array(labels2)).float()
return input_ids, labels1, labels2, attention_mask
if __name__ == "__main__":
model_path = "/Users/huangqianfei/.transformer/ernie-3.0-mini-zh"
tokenizer = BertTokenizer.from_pretrained(model_path)
line = "我爱北京天安门, fxbnlu unaffable"
list = tokenizer.tokenize(line)
print(list)
train_path = CUR_DIR + "/data/train_data.txt"
data_set = Reader(
train_path,
tokenizer=tokenizer,
max_token=50,
shuffle=True,
)
dataloader = DataLoader(
data_set,
collate_fn=data_set.collate_fn,
shuffle=True,
batch_size=2,
)
print(len(dataloader))
for step, batch in enumerate(dataloader):
input_ids, labels1, labels2, attention_mask = batch
shape = input_ids.shape
for i in range(3):
src = " ".join(tokenizer.convert_ids_to_tokens(input_ids[i]))
print(src)
line = tokenizer.decode(input_ids[i])
words = [x if x != "[PAD]" else "" for x in line.split()]
query = "".join(words).strip()
print(query, "->", labels1[i].item(), "->", labels2[i].item())
exit()