-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
277 lines (237 loc) · 11.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
from transformers import AutoTokenizer, AutoModelForCausalLM
from baukit import Trace, TraceDict
import torch
from transformers import AutoTokenizer,AutoModelForCausalLM
import random
import torch as t
import pandas as pd
from sklearn.decomposition import PCA
import os
import numpy as np
import torch.nn as nn
import torch.optim as optim
from tqdm import tqdm
from sklearn.preprocessing import StandardScaler
import sklearn
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from sklearn.linear_model import LogisticRegression
import json
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
general_qa_prompt="""Question: {}
Answer: {}"""
def open_json_file(file_name):
if '/data' not in file_name:
file_name = os.path.join('./data',file_name)
with open(file_name, "r") as file:
data = json.load(file)
return data
def convert_score2acc(score,label):
binary_pred = (score >= 0.5).astype(int)
accuracy = np.mean(binary_pred == label)
return accuracy
def sigmoid(x):
x_ravel = x.ravel() # 将numpy数组展平
length = len(x_ravel)
y = []
for index in range(length):
if x_ravel[index] >= 0:
y.append(1.0 / (1 + np.exp(-x_ravel[index])))
else:
y.append(np.exp(x_ravel[index]) / (np.exp(x_ravel[index]) + 1))
return np.array(y).reshape(x.shape)
def load_model(model_name, device):
tokenizer = AutoTokenizer.from_pretrained(model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto')
print(f"putting model to {device} ")
return model, tokenizer
def load_train_data(model_name, dataset_name, posi, upper_bound=-1, num_heads=32):
if model_name == 'llama2' or model_name == 'llama2_7b' or model_name == 'llama2_7b_chat' or model_name == 'mistral_7b':
assert num_heads==32, "wrong head num"
elif model_name == 'llama2_13b' or model_name == 'llama2_13b_chat':
assert num_heads==40, "wrong head num"
name = model_name+'_'+dataset_name+'_'+posi+'.npy'
label = load_npy(file_name=model_name+'_'+dataset_name+'_labels.npy')
print("train name "+name)
data = load_npy(file_name=name)
if posi == 'head_wise':
data = split_head_states(data, num_heads=num_heads, all_tokens=False)
if upper_bound != -1:
print(f"load train num: {upper_bound}")
data = data[:upper_bound]
label = label[:upper_bound]
return data, label
def load_test_data(model_name, test_file=None, posi=None, num_heads=32, selected_vali=False, selected_test=False):
if model_name != 'llama2' and model_name != 'llama2_7b_chat' and model_name != 'mistral_7b' and model_name != 'llama2_7b_finetuned' and num_heads == 32:
assert False, "Please check whether the num_head is correct"
if model_name == 'llama2' or model_name == 'llama2_7b' or model_name == 'llama2_7b_chat' or model_name=='mistral_7b' or model_name == 'llama2_7b_finetuned':
assert num_heads==32, "wrong head num"
elif model_name == 'llama2_13b' or model_name == 'llama2_13b_chat':
assert num_heads==40, "wrong head num"
name = model_name+'_'+test_file+'_'+posi+'.npy'
label = load_npy(file_name=model_name+'_'+test_file+'_labels.npy')
print("test name "+name)
data = load_npy(file_name=name)
if posi == 'head_wise':
data = split_head_states(data, num_heads=num_heads, all_tokens=False)
if selected_vali == True:
data = data[:100]
label = label[:100]
elif selected_test == True:
data = data[100:]
label = label[100:]
return data, label
def get_activations_bau(model, prompt, device, is_Head=False, is_Layer=False, is_MLP=False, is_MID_MLP=False, is_EXPERT=False, only_last=True):
model.eval()
HEADS = [f"model.layers.{i}.self_attn.o_proj" for i in range(model.config.num_hidden_layers)]
MLPS = [f"model.layers.{i}.mlp" for i in range(model.config.num_hidden_layers)]
MID_MLPS = [f"model.layers.{i}.mlp.down_proj" for i in range(model.config.num_hidden_layers)]
if is_EXPERT == True:
EXPERTS = [f"model.layers.{i}.block_sparse_moe.experts.{j}" for i in range(model.config.num_hidden_layers) for j in range(model.config.num_experts)]
selected = []
if is_Head:
selected += HEADS
if is_MLP:
selected += MLPS
if is_MID_MLP:
selected += MID_MLPS
if is_EXPERT:
selected += EXPERTS
results ={}
with torch.no_grad():
prompt = prompt.to(device)
with TraceDict(model, selected, retain_input=True) as ret:
output = model(prompt, output_hidden_states = is_Layer)
if is_Layer:
hidden_states = output.hidden_states
hidden_states = torch.stack(hidden_states, dim = 0).squeeze()
hidden_states = hidden_states.detach().cpu().numpy()
if only_last:
hidden_states = hidden_states[:,-1,:]
results['layer'] = hidden_states
if is_Head:
head_wise_hidden_states = [ret[head].input.squeeze().detach().cpu() for head in HEADS]
head_wise_hidden_states = torch.stack(head_wise_hidden_states, dim = 0).squeeze().numpy()
if only_last:
head_wise_hidden_states = head_wise_hidden_states[:,-1,:]
results['head'] = head_wise_hidden_states
if is_MLP:
mlp_wise_hidden_states = [ret[mlp].output.squeeze().detach().cpu() for mlp in MLPS]
mlp_wise_hidden_states = torch.stack(mlp_wise_hidden_states, dim = 0).squeeze().numpy()
if only_last:
mlp_wise_hidden_states = mlp_wise_hidden_states[:,-1,:]
results['mlp'] = mlp_wise_hidden_states
if is_MID_MLP:
mid_mlp_wise_hidden_states = [ret[mlp].input.squeeze().detach().cpu() for mlp in MID_MLPS]
mid_mlp_wise_hidden_states = torch.stack(mid_mlp_wise_hidden_states, dim = 0).squeeze().numpy()
if only_last:
mid_mlp_wise_hidden_states = mid_mlp_wise_hidden_states[:,-1,:]
results['mid_mlp'] = mid_mlp_wise_hidden_states
if is_EXPERT:
expert_wise_hidden_states = [ret[expert].output.squeeze().detach().cpu() for expert in EXPERTS]
expert_wise_hidden_states = torch.stack(expert_wise_hidden_states, dim = 0).squeeze().numpy()
if only_last:
expert_wise_hidden_states = expert_wise_hidden_states[:,-1,:]
results['expert'] = expert_wise_hidden_states
return results
def split_head_states(head_hidden_states, num_heads, all_tokens=True):
if all_tokens == True:
"""
input: head_hidden_states: shape layers x tokens x head_num*head_dim
aim: split it into different heads
return: tensor shapes like layers x tokens x head_num x head_dim
"""
if len(head_hidden_states.shape) == 3:
layers_num, tokens_num, head_mul_head_dim = head_hidden_states.shape
split_head_hidden_states = head_hidden_states.reshape(layers_num, tokens_num, num_heads, head_mul_head_dim//num_heads)
return split_head_hidden_states
elif len(head_hidden_states.shape) == 4:
bsz, layers_num, tokens_num, head_mul_head_dim = head_hidden_states.shape
split_head_hidden_states = head_hidden_states.reshape(bsz, layers_num, tokens_num, num_heads, head_mul_head_dim//num_heads)
return split_head_hidden_states
else:
dim = len(head_hidden_states.shape)
assert False, f"Wrong dimension of input head_hidden_states, require 3 or 4, but input is {dim}"
else:
"""
input: bsz x layers x head_num*head_dim
return: bsz x layers x head_num x head_dim
"""
if len(head_hidden_states.shape) == 2:
layers_num, head_mul_head_dim = head_hidden_states.shape
split_head_hidden_states = head_hidden_states.reshape(layers_num, num_heads, head_mul_head_dim//num_heads)
return split_head_hidden_states
elif len(head_hidden_states.shape) == 3:
bsz, layers_num, head_mul_head_dim = head_hidden_states.shape
split_head_hidden_states = head_hidden_states.reshape(bsz, layers_num, num_heads, head_mul_head_dim//num_heads)
return split_head_hidden_states
else:
dim = len(head_hidden_states.shape)
assert False, f"Wrong dimension of input head_hidden_states, require 3 or 4, but input is {dim}"
def load_dataset(dataset_name: str=None, seed:int =0, prompt_format:str =None):
""" prompt_format: indicate what prompt format we use
return {'data':data_str, 'labels':data_label}
"""
random.seed(seed)
if '.json' in dataset_name:
data = open_json_file(dataset_name)
data_str = []
data_label = []
if 'question' in data[0].keys() and 'answer' in data[0].keys():
# here we use the qa format
used_prompt = general_qa_prompt
print("----We are using the format "+used_prompt)
for d in data:
q = d['question']
a = d['answer']
temp_str = used_prompt.format(q,a)
data_str.append(temp_str)
data_label.append(d['label'])
res = {'data':data_str, 'labels':data_label}
return res
elif 'data' in data[0].keys():
for d in data:
data_str.append(d['data'])
data_label.append(d['label'])
res = {'data':data_str, 'labels':data_label}
return res
else:
assert False, f"No define of the key {data[0].keys()}"
def load_npy(file_name, features_folder):
file_path = ""
task1_file_list = ['ag_news', 'cnn_dailymail_re', 'dbpedia_14', 'facts', 'nq_re_long', 'race','triva_qa_re_long', 'triva_qa_re', 'animals', 'commonsense_qa', 'de-en', 'fr-en',
'openbookqa', 'record', 'anli', 'companies', 'definite_pronoun_resolution', 'hellaswag', 'paws', 'rte', 'web_nlg_re', 'easy_arc', 'arc', 'copa', 'dream',
'hotpot_qa_re', 'piqa', 'sciq', 'winogrande', 'arithmetic', 'cosmos_qa', 'e2e_nlg_cleaned', 'inventions', 'qnli', 'squad', 'wsc.fixed', 'boolq', 'counterfact',
'multirc', 'qqp', 'strategy_qa', 'xsum_re', 'capitals', 'creak', 'elements', 'nq_re', 'quarel', 'tqa', 'yelp_polarity', 'imdb', 'mrpc', "story_cloze", "wic"]
for temp_task in task1_file_list:
if temp_task in file_name:
file_path = os.path.join(f"{features_folder}/{temp_task}", file_name)
break
assert file_path!="", f"cannot find the folder for file {file_path}"
assert os.path.exists(file_path), f"There is no file named {file_path}"
data = np.load(file_path)
return data
def split_train_validation(data, labels, portion):
""" portion is a number between 0 and 1
"""
if type(data) == np.ndarray:
all_num = data.shape[0]
elif type(data) == list:
all_num = len(data)
else:
data_type = type(data)
assert False, f"wrong data type, must be np.ndarray or list but given {data_type}"
train_num = round(all_num*portion)
train_data = data[:train_num]
train_label = labels[:train_num]
vali_data = data[train_num:]
vali_label = labels[train_num:]
return train_data, train_label, vali_data, vali_label
def sync_shuffle(data, label):
assert data.shape[0]==label.shape[0],"mismatch of the train data num and the label num"
data_num = data.shape[0]
random_indices = np.random.permutation(data_num)
data = data[random_indices]
label = label[random_indices]
return data,label