-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompress_utils.py
221 lines (196 loc) · 9.79 KB
/
compress_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from argparse import ArgumentParser
from pathlib import Path
import pickle
import numpy as np
import random
import itertools
import sys
import numpy as np
from utils import load_npy, split_head_states, load_train_data, load_test_data, sync_shuffle
from probe_utils import get_probe_acc, train_single_probe, test_probe_data, MMProbe, MLP_Probe
import matplotlib.pyplot as plt
import os
from sklearn.linear_model import LogisticRegression
from into_csv import write_csv
from itertools import permutations
import json
from matplotlib import pyplot
def has_lr_model(train_task_name_list, posi):
if isinstance(train_task_name_list, str):
train_task_name_list = [train_task_name_list]
permutations_list = list(permutations(train_task_name_list))
file_name_pefix_list = []
for temp in permutations_list:
file_name_pefix_list.append('_'.join(temp)+'_'+posi+'.pkl')
for file_name in file_name_pefix_list:
file_path = os.path.join('./lr_models', file_name)
if os.path.isfile(file_path):
return True, file_path
return False,""
def extract_w(probe):
if isinstance(probe, LogisticRegression):
weights = probe.coef_
# print(weights)
# print(weights.shape)
return weights
elif isinstance(probe, MMProbe):
weights = probe.direction
weights = weights.cpu().numpy()
weights = weights.reshape(1,-1)
return weights
def get_dim(probe):
if isinstance(probe, list):
probe = probe[0]
w = extract_w(probe)
return w.shape[1]
def w_find_k_largest(w, k):
"""
finding the largest k weight position to suppress the hidden state.
w: (1,dim)
k: the largest k num
return: the index of the k largest number
"""
abs_w = np.abs(w)
indices = np.argsort(abs_w)[0, -k:]
nonzero_indices = indices[np.nonzero(w[0, indices])]
if indices.shape != nonzero_indices.shape:
return indices
return nonzero_indices
def is_compressible(probe, k):
"""
is compressible if and only if k <= probe dim
"""
w = extract_w(probe)
return k <= w.shape[1]
def compress_probe(probe,k=1):
"""
probe: the logistic regression trained by sklearn or a probe list
k: k largest number to return
"""
if not isinstance(probe, list):
probe = [probe]
ans_indices=[]
for p in probe:
w = extract_w(probe=p)
indices = w_find_k_largest(w=w, k=k)
# breakpoint()
ans_indices.append(indices)
return ans_indices
def probeless(data, label):
data_0 = data[label == 0]
data_1 = data[label == 1]
mean_0 = np.mean(data_0, axis=0)
mean_1 = np.mean(data_1, axis=0)
scores = np.abs(mean_0-mean_1)
return scores
def select_index(acc, selected_num, max_diff_acc):
if isinstance(acc, list):
acc = np.array(acc)
sorted_indices = np.argsort(acc)
acc_max = np.max(acc)
if selected_num == -1:
indices = sorted_indices
else:
indices = sorted_indices[-selected_num:]
threshold = acc_max - max_diff_acc
indices = indices[np.where(acc[indices] >= threshold)]
print(f"selected acc {acc[indices]}")
print(f"selected indices {indices}")
print(f"selected num {indices.shape[0]}")
return indices
def pure_merge_dataset(model_name, dataset_name, posi, num_heads=32, test_file=None,
selected_vali=False, selected_test=False):
other_train_data = []
other_train_label = []
if dataset_name!=None and isinstance(dataset_name,str):
dataset_name = [dataset_name]
if dataset_name is not None:
for other_dataset in dataset_name:
temp_data, temp_label = load_train_data(model_name=model_name, dataset_name=other_dataset, posi=posi,
num_heads=num_heads)
other_train_data.append(temp_data)
other_train_label.append(temp_label)
# collect training dataset done!
if other_train_data!=[]:
train_data = np.concatenate(other_train_data, axis=0)
train_label = np.concatenate(other_train_label, axis=0)
train_data, train_label = sync_shuffle(train_data, train_label)
vali_data, vali_label = load_test_data(model_name=model_name, test_file=test_file, posi=posi, num_heads=num_heads, selected_vali=selected_vali, selected_test=selected_test)
if posi=='head_wise':
bsz,_,_,head_dim = train_data.shape
train_data = train_data.reshape(bsz, -1, head_dim)
vali_bsz, _,_, head_dim = vali_data.shape
vali_data = vali_data.reshape(vali_bsz, -1, head_dim)
return train_data, train_label, vali_data, vali_label
def selective_merge_position_data( model_name, dataset_name, posi, selected_num=1, posi_list=None, acc=None, indices=None, num_heads=32, test_file=None, max_diff_acc=1, selected_flat_indices=None
, selected_vali=False, selected_test=False):
train_data, train_label, vali_data, vali_label = pure_merge_dataset(model_name=model_name, dataset_name=dataset_name, posi=posi, num_heads=num_heads, test_file=test_file,
selected_vali=selected_vali, selected_test=selected_test)
if selected_flat_indices is None:
# according to acc select `selected_num` positions to use
if indices is None:
indices = select_index(acc, selected_num, max_diff_acc)
merged_data_list = []
vali_merged_data_list = []
for ind in indices:
merged_data_list.append( train_data[:,ind,posi_list[ind]] )
vali_merged_data_list.append( vali_data[:,ind, posi_list[ind]])
merged_data = np.concatenate(merged_data_list, axis=1)
vali_merged_data = np.concatenate(vali_merged_data_list, axis=1)
return merged_data, train_label, vali_merged_data, vali_label
else:
train_bsz = train_data.shape[0]
vali_bsz = vali_data.shape[0]
train_data = train_data.reshape(train_bsz, -1)
vali_data = vali_data.reshape(vali_bsz, -1)
train_data = train_data[:,selected_flat_indices]
vali_data = vali_data[:,selected_flat_indices]
return train_data, train_label, vali_data, vali_label
model_name_list = ['llama2','llama2_13b']
dataset_name_list = ['saplma']
topic_name_list = ['animals','capitals','companies','elements','facts','inventions']
model_posi = ['head_wise','layer_wise','mlp_wise','mid_mlp_wise']
def compress(k=1, selected_num=1, posi='head_wise', model_name=None,dataset_name=None, test_file=None, is_MLP=False, is_MM=False, num_heads=32, exit_posi=False, max_diff_acc=1, solver=None, penalty=None, is_probe=True, input_dim=100,
selected_vali=False, selected_test=False):
if model_name == 'llama2_13b_chat':
num_heads = 40
if is_probe == True:
old_probs,acc = get_probe_acc(model_name=model_name, dataset_name=dataset_name, posi=posi, test_file=test_file, is_MLP=is_MLP, is_MM=is_MM, num_heads=num_heads, solver=solver, penalty=penalty, selected_vali=selected_vali, selected_test=selected_test)
max_index = np.argmax(acc)
print(f"before acc {acc[max_index]}")
old_acc = acc[max_index]
posi_list = compress_probe(old_probs, k=k )
if exit_posi:
return posi_list,acc, old_probs
print(f" compressing {posi} neurons to {k}")
# print(f"using {selected_num} positions to train")
data, label, vali_data, vali_label = selective_merge_position_data(acc=acc, posi_list=posi_list, selected_num=selected_num, model_name=model_name, dataset_name=dataset_name, posi=posi, num_heads=num_heads, test_file=test_file, max_diff_acc=max_diff_acc,
selected_vali=selected_vali, selected_test=selected_test)
probe, acc = train_single_probe(x_train=data, y_train=label, x_val=vali_data, y_val=vali_label, is_MM=is_MM, is_MLP=is_MLP)
# print( "acc")
return probe, acc
else:
train_data, train_label, vali_data, vali_label = pure_merge_dataset(model_name=model_name, dataset_name=dataset_name, posi=posi, num_heads=num_heads, test_file=test_file,
selected_vali=selected_vali, selected_test=selected_test)
scores = probeless(data = train_data, label = train_label) # shape like position x dim
# breakpoint()
print(f"selecting {input_dim} neurons")
selected_flat_indices = np.argsort(scores.flatten())[::-1][:input_dim]
if exit_posi:
return selected_flat_indices
data, label, vali_data, vali_label = selective_merge_position_data( model_name=model_name, dataset_name=dataset_name, posi=posi, num_heads=num_heads, test_file=test_file, selected_flat_indices=selected_flat_indices,
selected_vali=selected_vali, selected_test=selected_test)
probe, acc = train_single_probe(x_train=data, y_train=label, x_val=vali_data, y_val=vali_label, is_MM=is_MM, is_MLP=is_MLP)
return probe, acc
def specify_classifer(k, model_name=None,dataset_name=None, topic_name=None, test_topic=None, test_file=None, is_MLP=False, num_heads=32, posi_index=-1, posi=None):
old_probs,acc = get_probe_acc(model_name=model_name, dataset_name=dataset_name, topic_name=topic_name, posi=posi, portion=0.7, test_file=test_file, test_topic=test_topic, is_MLP=is_MLP, num_heads=num_heads)
indices = compress_probe(old_probs[posi_index], k=k)
print(f"acc in position {posi_index} is: {acc[posi_index]}")
print(indices)
return indices
def merge_indices(indices_list):
if isinstance(indices_list, list):
indices_list = np.array(indices_list)
indices_list = np.concatenate(indices_list)
indices = np.unique(indices_list)
return indices