Skip to content

Latest commit

 

History

History
84 lines (66 loc) · 2.11 KB

README.md

File metadata and controls

84 lines (66 loc) · 2.11 KB

Commodity price tracking

Summary

September 2015. Visualizing commodity price data.

Specs

  • Partner: TBD
  • Start date: Sep 2015
  • Status: Converting .csv files into a .json. Building a prototype viz in MetricsGraphics.js.

Notes

The .dbf files are in the following format:

SORTCOD CTYP DIV DTE WEK ITM01 PRA01 PRB01 ... ITM35 PRA35 PRB35
int int int yyyy-mm-dd int int int int ... int int int

where

  • SORTCOD = ?
  • CTYP = commodity type?
  • DIV = geographic region/division?
  • DTE = date
  • WEK = ?
  • ITM = the commodity
  • PRA = min price
  • PRB = max price

So we need to reshape it from wide to long. Final, desired output would be a JSON array of commodities, where each commodity is an object with date-price data.

Currently:

{
	"Bahawalpur": {
		"(item 1)": [{"date": x, "price": y},...,{"date": x, "price": y}],
		"(item 2)": [{"date": x, "price": y},...,{"date": x, "price": y}]
	},
	"D.G. Khan": { ... }
}

Goal:

[
	{
	"region": "Bahawalpur",
	"items": [
		{"(item 1)": [[{"date": x, "price": y},...,{"date": x, "price": y}]},
		{"(item 2)": [[{"date": x, "price": y},...,{"date": x, "price": y}]},
		]
	}, {
	"region": "D.G. Khan",
	"items": [
		{"(item 1)": [[{"date": x, "price": y},...,{"date": x, "price": y}]},
		{"(item 2)": [[{"date": x, "price": y},...,{"date": x, "price": y}]},
		]
	}
]

Resources

TODO

  1. Get git set up.
  2. Convert .dbf to .csv. See cleaning.py.
  3. Does that nested JSON make sense?
  4. Convert .csv into nested .json. See json-prep.html for the actual conversion.
  5. First go at MetricsGraphics.js. See demo.html.
  6. Is the JSON in the right format for MetricsGraphics?
  7. alldata.json: convert object into array of objects?
  8. alldata.json: "item": d.itm?
  9. Make pretty. Sort of pretty.
  10. Standardize axes?
  11. Region filter functionality.
  12. Error/alert for missing data.