-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathmetrics_compute.py
143 lines (112 loc) · 5.31 KB
/
metrics_compute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch.nn.functional as F
from util.util import compute_tensor_iu
def get_new_iou_hook(values, size):
return 'iou/new_iou_%s'%size, values['iou/new_i_%s'%size]/values['iou/new_u_%s'%size]
def get_orig_iou_hook(values):
return 'iou/orig_iou', values['iou/orig_i']/values['iou/orig_u']
def get_iou_gain(values, size):
return 'iou/iou_gain_%s'%size, values['iou/new_iou_%s'%size] - values['iou/orig_iou']
iou_hooks_to_be_used = [
get_orig_iou_hook,
lambda x: get_new_iou_hook(x, '224'), lambda x: get_iou_gain(x, '224'),
lambda x: get_new_iou_hook(x, '56'), lambda x: get_iou_gain(x, '56'),
lambda x: get_new_iou_hook(x, '28'), lambda x: get_iou_gain(x, '28'),
lambda x: get_new_iou_hook(x, '28_2'), lambda x: get_iou_gain(x, '28_2'),
lambda x: get_new_iou_hook(x, '28_3'), lambda x: get_iou_gain(x, '28_3'),
lambda x: get_new_iou_hook(x, '56_2'), lambda x: get_iou_gain(x, '56_2'),
]
iou_hooks_final_only = [
get_orig_iou_hook,
lambda x: get_new_iou_hook(x, '224'), lambda x: get_iou_gain(x, '224'),
]
# Compute common loss and metric for generator only
def compute_loss_and_metrics(images, para, detailed=True, need_loss=True, has_lower_res=True):
"""
This part compute loss and metrics for the generator
"""
loss_and_metrics = {}
gt = images['gt']
seg = images['seg']
pred_224 = images['pred_224']
if has_lower_res:
pred_28 = images['pred_28']
pred_56 = images['pred_56']
pred_28_2 = images['pred_28_2']
pred_28_3 = images['pred_28_3']
pred_56_2 = images['pred_56_2']
if need_loss:
# Loss weights
ce_weights = para['ce_weight']
l1_weights = para['l1_weight']
l2_weights = para['l2_weight']
# temp holder for losses at different scale
ce_loss = [0] * 6
l1_loss = [0] * 6
l2_loss = [0] * 6
loss = [0] * 6
ce_loss[0] = F.binary_cross_entropy_with_logits(images['out_224'], (gt>0.5).float())
if has_lower_res:
ce_loss[1] = F.binary_cross_entropy_with_logits(images['out_28'], (gt>0.5).float())
ce_loss[2] = F.binary_cross_entropy_with_logits(images['out_56'], (gt>0.5).float())
ce_loss[3] = F.binary_cross_entropy_with_logits(images['out_28_2'], (gt>0.5).float())
ce_loss[4] = F.binary_cross_entropy_with_logits(images['out_28_3'], (gt>0.5).float())
ce_loss[5] = F.binary_cross_entropy_with_logits(images['out_56_2'], (gt>0.5).float())
l1_loss[0] = F.l1_loss(pred_224, gt)
if has_lower_res:
l2_loss[0] = F.mse_loss(pred_224, gt)
l1_loss[1] = F.l1_loss(pred_28, gt)
l2_loss[1] = F.mse_loss(pred_28, gt)
l1_loss[2] = F.l1_loss(pred_56, gt)
l2_loss[2] = F.mse_loss(pred_56, gt)
if has_lower_res:
l1_loss[3] = F.l1_loss(pred_28_2, gt)
l2_loss[3] = F.mse_loss(pred_28_2, gt)
l1_loss[4] = F.l1_loss(pred_28_3, gt)
l2_loss[4] = F.mse_loss(pred_28_3, gt)
l1_loss[5] = F.l1_loss(pred_56_2, gt)
l2_loss[5] = F.mse_loss(pred_56_2, gt)
loss_and_metrics['grad_loss'] = F.l1_loss(images['gt_sobel'], images['pred_sobel'])
# Weighted loss for different levels
for i in range(6):
loss[i] = ce_loss[i] * ce_weights[i] + \
l1_loss[i] * l1_weights[i] + \
l2_loss[i] * l2_weights[i]
loss[0] += loss_and_metrics['grad_loss'] * para['grad_weight']
"""
Compute IOU stats
"""
orig_total_i, orig_total_u = compute_tensor_iu(seg>0.5, gt>0.5)
loss_and_metrics['iou/orig_i'] = orig_total_i
loss_and_metrics['iou/orig_u'] = orig_total_u
new_total_i, new_total_u = compute_tensor_iu(pred_224>0.5, gt>0.5)
loss_and_metrics['iou/new_i_224'] = new_total_i
loss_and_metrics['iou/new_u_224'] = new_total_u
if has_lower_res:
new_total_i, new_total_u = compute_tensor_iu(pred_56>0.5, gt>0.5)
loss_and_metrics['iou/new_i_56'] = new_total_i
loss_and_metrics['iou/new_u_56'] = new_total_u
new_total_i, new_total_u = compute_tensor_iu(pred_28>0.5, gt>0.5)
loss_and_metrics['iou/new_i_28'] = new_total_i
loss_and_metrics['iou/new_u_28'] = new_total_u
new_total_i, new_total_u = compute_tensor_iu(pred_28_2>0.5, gt>0.5)
loss_and_metrics['iou/new_i_28_2'] = new_total_i
loss_and_metrics['iou/new_u_28_2'] = new_total_u
new_total_i, new_total_u = compute_tensor_iu(pred_28_3>0.5, gt>0.5)
loss_and_metrics['iou/new_i_28_3'] = new_total_i
loss_and_metrics['iou/new_u_28_3'] = new_total_u
new_total_i, new_total_u = compute_tensor_iu(pred_56_2>0.5, gt>0.5)
loss_and_metrics['iou/new_i_56_2'] = new_total_i
loss_and_metrics['iou/new_u_56_2'] = new_total_u
"""
All done.
Now gather everything in a dict for logging
"""
if need_loss:
loss_and_metrics['total_loss'] = 0
for i in range(6):
loss_and_metrics['ce_loss/s_%d'%i] = ce_loss[i]
loss_and_metrics['l1_loss/s_%d'%i] = l1_loss[i]
loss_and_metrics['l2_loss/s_%d'%i] = l2_loss[i]
loss_and_metrics['loss/s_%d'%i] = loss[i]
loss_and_metrics['total_loss'] += loss[i]
return loss_and_metrics