-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
525 lines (461 loc) · 19.8 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import logging
import os
from dataclasses import dataclass
from typing import Any, Dict, Optional, Union
import numpy as np
from datasets import load_dataset
from torch.utils.data import DataLoader, Dataset
from transformers import BatchEncoding, PreTrainedTokenizerBase
from transformers.utils import PaddingStrategy
from fewshot import get_few_shot
def prepare_data(
example: Dict[str, Union[bool, str]],
tokenizer: PreTrainedTokenizerBase,
is_encoder_decoder: bool = False,
max_length: int = 2048,
train: bool = False,
prompt_loss_weight: float = 0.05,
fewshot: bool = False,
) -> BatchEncoding:
"""
Prepare data for training or inference.
Args:
example ('dict'):
The example to prepare.
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer to use.
is_encoder_decoder (`bool`, optional):
Whether the model is an encoder-decoder model. Defaults to `False`.
max_length (`int`, optional):
The maximum length of the input. Defaults to `2048`.
train (`bool`, optional):
Whether we are training or not. Defaults to `False`.
prompt_loss_weight (`float`, optional):
The weight of the prompt tokens in the loss. If set to '0.05' the prompt tokens will have a total weight
of 5% in the loss while the result tokens will have a total weight of 95%. Defaults to `0.05`.
fewshot (`bool`, optional):
Wheter to add fewshot examples to the prompt. Defaults to `False`.
Returns:
`BatchEncoding`: `BatchEncoding` with the prepared data.
"""
if isinstance(example["label"], bool):
label = 1 if example["label"] else 0
elif isinstance(example["label"], str):
label = 1 if example["label"].lower() == "true" else 0
elif isinstance(example["label"], int):
label = example["label"]
else:
raise ValueError(f"Label {example['label']} is not a valid label.")
if tokenizer.chat_template is None:
if not hasattr(prepare_data, "_warning_logged"):
logging.warning(
(
"Chat template is not set in the tokenizer. We won't use any chat template for the prompt. "
"If you are using an instruction-tuned model, this will likely result in worse performance."
)
)
prepare_data._warning_logged = True
if not fewshot:
if tokenizer.chat_template is not None:
prompt = f"Is the following statement True or False? Answer only True or False. {example['sentence'].strip()}"
else:
prompt = f"Is the following statement True or False? {example['sentence'].strip()}"
else:
if tokenizer.chat_template is not None:
prompt = (
"Is the following statement True or False? Answer only True or False.\n"
"Here are some examples:\n"
f"{get_few_shot()}\n\n"
f"{example['sentence'].strip()}"
)
else:
prompt = (
"Is the following statement True or False?"
f"{get_few_shot()}\n\n"
f"{example['sentence'].strip()}"
)
if not is_encoder_decoder:
prompt = f"{prompt} " # Add a space at the end so the next token to predict is True or False
if tokenizer.chat_template is not None:
prompt_w_answer = tokenizer.apply_chat_template(
[
{"role": "user", "content": prompt},
{
"role": "assistant",
"content": "True" if label == 1 else "False",
},
],
tokenize=False,
add_generation_prompt=False,
)
prompt_wo_answer = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
tokenize=False,
add_generation_prompt=True,
)
else:
prompt_wo_answer = prompt
prompt_w_answer = (
f"{prompt.strip()} True" if label == 1 else f"{prompt.strip()} False"
)
if is_encoder_decoder:
model_inputs = tokenizer(
text=prompt_wo_answer,
max_length=max_length,
truncation=True,
padding=False,
return_tensors=None,
add_special_tokens=True,
)
model_inputs["labels"] = tokenizer(
text_target="True" if label == 1 else "False",
max_length=max_length,
truncation=True,
padding=False,
return_tensors=None,
add_special_tokens=True,
)["input_ids"]
model_inputs["loss_weight_mask"] = np.ones(
len(model_inputs["labels"]), dtype=np.float32
)
else:
model_inputs = tokenizer(
text=prompt_w_answer if train else prompt_wo_answer,
max_length=max_length,
truncation=True,
padding=False,
return_tensors=None,
add_special_tokens=True,
)
if train:
model_inputs["labels"] = model_inputs["input_ids"].copy()
# Find the prompt length
prompt_wo_answer = tokenizer(
text=prompt_wo_answer,
max_length=max_length,
truncation=True,
padding=False,
return_tensors=None,
add_special_tokens=True,
)["input_ids"]
# Remove the last token if it is an eos token
if prompt_wo_answer[-1] == tokenizer.eos_token_id:
prompt_wo_answer = prompt_wo_answer[:-1]
if len(prompt_wo_answer) > len(model_inputs["labels"]):
raise ValueError(
f"Prompt is longer than the input, something went wrong.nPrompt: {prompt_wo_answer}.\nInput:"
f" {model_inputs['labels']}.\n"
f"Prompt: {tokenizer.decode(prompt_wo_answer)}\nInput: {tokenizer.decode(model_inputs['labels'])}"
)
loss_weight_mask = np.ones(len(model_inputs["labels"]), dtype=np.float32)
len_prompt = len(prompt_wo_answer)
len_result = len(model_inputs["labels"]) - len_prompt
prompt_token_weight = (
len_result * prompt_loss_weight
) # 'prompt_loss_weight' percent of the total loss
try:
prompt_token_weight = prompt_token_weight * (
len_result / (len_result * (1 - prompt_loss_weight))
) # Scale so result tokens can have 1.0 weight
prompt_token_weight = (
prompt_token_weight / len_prompt
) # Divide by the number of prompt tokens
except ZeroDivisionError:
print(
"Found division by zero in prompt token weight calculation. You might have an empty prompt, empty"
f" result, or both. Example with error: {example}. Setting prompt token weight to 0.0."
)
prompt_token_weight = 0.0
for i in range(len(prompt_wo_answer)):
loss_weight_mask[i] = prompt_token_weight
model_inputs["loss_weight_mask"] = loss_weight_mask
else:
if model_inputs["input_ids"][-1] == tokenizer.eos_token_id:
model_inputs["input_ids"] = model_inputs["input_ids"][:-1]
model_inputs["attention_mask"] = model_inputs["attention_mask"][:-1]
if "token_type_ids" in model_inputs:
# LLaMa tokenizer adds token type ids, but we don't need them
model_inputs.pop("token_type_ids")
return model_inputs
class ThisIsNotADataset(Dataset):
def __init__(
self,
tokenizer: PreTrainedTokenizerBase,
split: str,
is_encoder_decoder: bool = False,
max_length: int = 2048,
fewshot: bool = False,
prompt_loss_weight: float = 0.05,
pattern: str = None,
only_affirmative: bool = False,
only_negative: bool = False,
only_non_distractor: bool = False,
only_distractor: bool = False,
):
self.split = split.lower()
self.dataset = []
self.jsonl_dataset = []
dataset = load_dataset("HiTZ/This-is-not-a-dataset", split=self.split)
if pattern is not None:
assert pattern in [
"Synonymy1",
"Antonymy1",
"Synonymy2",
"Antonymy2",
"Hypernymy",
"Part",
"Substance",
"Member",
"Agent",
"Instrument",
"Result",
]
print(f"We are only loading examples with pattern {pattern}")
assert not (only_affirmative and only_negative)
assert not (only_non_distractor and only_distractor)
if only_affirmative:
print("We are only loading affirmative examples")
if only_negative:
print("We are only loading negative examples")
if only_non_distractor:
print("We are only loading non-distractor examples")
if only_distractor:
print("We are only loading distractor examples")
for example in dataset:
load = True
if pattern is not None:
if example["pattern"] != pattern:
load = False
if only_affirmative:
if example["negation_type"] == "affirmation":
load = False
if only_negative:
if example["negation_type"] != "affirmation":
load = False
if only_non_distractor:
if example["isDistractor"]:
load = False
if only_distractor:
if not example["isDistractor"]:
load = False
if load:
self.jsonl_dataset.append(example)
self.dataset.append(
prepare_data(
example=example,
tokenizer=tokenizer,
is_encoder_decoder=is_encoder_decoder,
max_length=max_length,
fewshot=fewshot,
train=self.split == "train",
prompt_loss_weight=prompt_loss_weight,
)
)
print(f"Loaded {len(self.dataset)} examples from {split} split")
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def get_jsonl(self):
return self.jsonl_dataset
@dataclass
class DataCollatorForSeq2Seq:
"""
Data collator that will dynamically pad the inputs received, as well as the labels.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
model ([`PreTrainedModel`]):
The model that is being trained. If set and has the *prepare_decoder_input_ids_from_labels*, use it to
prepare the *decoder_input_ids*
This is useful when using *label_smoothing* to avoid calculating loss twice.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
- `True` or `'longest'` (default): Pad to the longest sequence in the batch (or no padding if only a single
sequence is provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'`: No padding (i.e., can output a batch with sequences of different lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
label_pad_token_id (`int`, *optional*, defaults to -100):
The id to use when padding the labels (-100 will be automatically ignored by PyTorch loss functions).
return_tensors (`str`):
The type of Tensor to return. Allowable values are "np", "pt" and "tf".
"""
tokenizer: PreTrainedTokenizerBase
model: Optional[Any] = None
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
label_pad_token_id: int = -100
return_tensors: str = "pt"
def __call__(self, features, return_tensors=None):
if return_tensors is None:
return_tensors = self.return_tensors
labels = (
[feature["labels"] for feature in features]
if "labels" in features[0].keys()
else None
)
loss_weight_mask = (
[feature["loss_weight_mask"] for feature in features]
if "loss_weight_mask" in features[0].keys()
else None
)
# We have to pad the labels before calling `tokenizer.pad` as this method won't pad them and needs them of the
# same length to return tensors.
if labels is not None:
max_label_length = max(len(l) for l in labels)
if self.pad_to_multiple_of is not None:
max_label_length = (
(max_label_length + self.pad_to_multiple_of - 1)
// self.pad_to_multiple_of
* self.pad_to_multiple_of
)
padding_side = self.tokenizer.padding_side
for feature in features:
remainder = [self.label_pad_token_id] * (
max_label_length - len(feature["labels"])
)
if isinstance(feature["labels"], list):
feature["labels"] = (
feature["labels"] + remainder
if padding_side == "right"
else remainder + feature["labels"]
)
elif padding_side == "right":
feature["labels"] = np.concatenate(
[feature["labels"], remainder]
).astype(np.int64)
else:
feature["labels"] = np.concatenate(
[remainder, feature["labels"]]
).astype(np.int64)
if loss_weight_mask is not None:
max_loss_weight_mask_length = max(len(l) for l in loss_weight_mask)
if self.pad_to_multiple_of is not None:
max_loss_weight_mask_length = (
(max_loss_weight_mask_length + self.pad_to_multiple_of - 1)
// self.pad_to_multiple_of
* self.pad_to_multiple_of
)
padding_side = self.tokenizer.padding_side
for feature in features:
remainder = [0.0 if self.label_pad_token_id == -100 else 1.0] * (
max_loss_weight_mask_length - len(feature["loss_weight_mask"])
)
if isinstance(feature["loss_weight_mask"], list):
feature["loss_weight_mask"] = (
feature["loss_weight_mask"] + remainder
if padding_side == "right"
else remainder + feature["loss_weight_mask"]
)
elif padding_side == "right":
feature["loss_weight_mask"] = np.concatenate(
[feature["loss_weight_mask"], remainder]
).astype(np.float32)
else:
feature["loss_weight_mask"] = np.concatenate(
[remainder, feature["loss_weight_mask"]]
).astype(np.float32)
features = self.tokenizer.pad(
features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=return_tensors,
)
# prepare decoder_input_ids
if (
labels is not None
and self.model is not None
and hasattr(self.model, "prepare_decoder_input_ids_from_labels")
):
decoder_input_ids = self.model.prepare_decoder_input_ids_from_labels(
labels=features["labels"]
)
features["decoder_input_ids"] = decoder_input_ids
return features
def get_dataloader(
tokenizer: PreTrainedTokenizerBase,
split: str,
is_encoder_decoder: bool = False,
max_length: int = 512,
fewshot: bool = False,
batch_size: int = 1,
prompt_loss_weight: float = 0.05,
num_workers: int = min(8, os.cpu_count()),
pattern: str = None,
only_affirmative: bool = False,
only_negative: bool = False,
only_non_distractor: bool = False,
only_distractor: bool = False,
) -> DataLoader:
"""
Get a dataloader for a dataset.
Args:
tokenizer (`PreTrainedTokenizerBase`):
The tokenizer to use.
split ('list'):
The split to load (train, dev, test, all).
is_encoder_decoder (`bool`, optional):
Whether the model is an encoder-decoder model. Defaults to `False`.
max_length (`int`, optional):
The maximum length of the input. Defaults to `2048`.
fewshot (`bool`, optional):
Wheter to add fewshot examples to the prompt. Defaults to `False`.
batch_size (`int`, optional):
The batch size. Defaults to `1`.
prompt_loss_weight (`float`, optional):
The weight of the prompt tokens in the loss. If set to '0.05' the prompt tokens will have a total weight
of 5% in the loss while the result tokens will have a total weight of 95%. Defaults to `0.05`.
add_bos_token (`bool`, optional):
Whether to add the beginning of sentence token to the input. Defaults to `False`.
num_workers (`int`, optional):
The number of workers to use for the dataloader. Defaults to `0`.
pattern (`str`, optional):
The pattern to use for training. Defaults to `None`.
only_affirmative (`bool`, optional):
Whether to only load affirmative examples for training. Defaults to `False`.
only_negative (`bool`, optional):
Whether to only load negative examples for training. Defaults to `False`.
only_non_distractor (`bool`, optional):
Whether to only load non-distractor examples for training. Defaults to `False`.
only_distractor (`bool`, optional):
Whether to only load distractor examples for training. Defaults to `False`.
Returns:
`DataLoader`: The dataloader.
"""
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding=True,
label_pad_token_id=-100, # tokenizer.pad_token_id,
# pad_to_multiple_of=8, # May be faster on some hardware
)
dataset = ThisIsNotADataset(
tokenizer=tokenizer,
split=split,
is_encoder_decoder=is_encoder_decoder,
max_length=max_length,
fewshot=fewshot,
prompt_loss_weight=prompt_loss_weight,
pattern=pattern,
only_affirmative=only_affirmative,
only_negative=only_negative,
only_non_distractor=only_non_distractor,
only_distractor=only_distractor,
)
return DataLoader(
dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=split == "train",
collate_fn=data_collator,
pin_memory=True,
)