15
15
package org .dianahep .histogrammar
16
16
17
17
import scala .collection .JavaConversions ._
18
+ import scala .language .existentials
18
19
import scala .reflect .ClassTag
19
20
20
21
import org .apache .spark .sql .types .StringType
@@ -24,6 +25,10 @@ import org.apache.spark.sql.DataFrame
24
25
import org .apache .spark .sql .Row
25
26
26
27
package object sparksql {
28
+ import org .dianahep .histogrammar .util .Compatible
29
+
30
+ type Agg = C forSome {type C <: Container [C ] with Aggregation {type Datum = Row }}
31
+
27
32
implicit class UserFcnFromColumn [+ RANGE ](@ scala.transient val col : Column ) extends UserFcn [Row , RANGE ] {
28
33
var index = - 1
29
34
val name = Some (col.toString)
@@ -74,66 +79,112 @@ package object sparksql {
74
79
75
80
df.select(columns.result: _* ).rdd.aggregate(container)({(h : CONTAINER , d : Row ) => h.fill(d); h}, {(h1 : CONTAINER , h2 : CONTAINER ) => h1 + h2})
76
81
}
82
+
83
+ def Average (quantity : UserFcn [Row , Double ]) = histogrammar(org.dianahep.histogrammar.Average [Row ](quantity))
84
+
85
+ def Bag [RANGE : ClassTag ](quantity : UserFcn [Row , RANGE ], range : String = " " ) = histogrammar(org.dianahep.histogrammar.Bag [Row , RANGE ](quantity, range))
86
+
87
+ def Bin [V <: Container [V ] with Aggregation {type Datum >: Row }, U <: Container [U ] with Aggregation {type Datum >: Row }, O <: Container [O ] with Aggregation {type Datum >: Row }, N <: Container [N ] with Aggregation {type Datum >: Row }](num : Int , low : Double , high : Double , quantity : UserFcn [Row , Double ], value : => V = Count (), underflow : U = Count (), overflow : O = Count (), nanflow : N = Count ()) = histogrammar(org.dianahep.histogrammar.Bin [Row , V , U , O , N ](num, low, high, quantity, value, underflow, overflow, nanflow))
88
+
89
+ def Branch [C0 <: Container [C0 ] with Aggregation ](i0 : C0 ) = histogrammar(new Branching (0.0 , i0, BranchingNil ).asInstanceOf [Agg ])
90
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation ](i0 : C0 , i1 : C1 )(implicit e01 : C0 Compatible C1 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, BranchingNil )).asInstanceOf [Agg ])
91
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, BranchingNil ))).asInstanceOf [Agg ])
92
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, BranchingNil )))).asInstanceOf [Agg ])
93
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation , C4 <: Container [C4 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 , i4 : C4 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 , e04 : C0 Compatible C4 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, BranchingNil ))))).asInstanceOf [Agg ])
94
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation , C4 <: Container [C4 ] with Aggregation , C5 <: Container [C5 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 , i4 : C4 , i5 : C5 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 , e04 : C0 Compatible C4 , e05 : C0 Compatible C5 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, BranchingNil )))))).asInstanceOf [Agg ])
95
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation , C4 <: Container [C4 ] with Aggregation , C5 <: Container [C5 ] with Aggregation , C6 <: Container [C6 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 , i4 : C4 , i5 : C5 , i6 : C6 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 , e04 : C0 Compatible C4 , e05 : C0 Compatible C5 , e06 : C0 Compatible C6 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, BranchingNil ))))))).asInstanceOf [Agg ])
96
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation , C4 <: Container [C4 ] with Aggregation , C5 <: Container [C5 ] with Aggregation , C6 <: Container [C6 ] with Aggregation , C7 <: Container [C7 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 , i4 : C4 , i5 : C5 , i6 : C6 , i7 : C7 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 , e04 : C0 Compatible C4 , e05 : C0 Compatible C5 , e06 : C0 Compatible C6 , e07 : C0 Compatible C7 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, BranchingNil )))))))).asInstanceOf [Agg ])
97
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation , C4 <: Container [C4 ] with Aggregation , C5 <: Container [C5 ] with Aggregation , C6 <: Container [C6 ] with Aggregation , C7 <: Container [C7 ] with Aggregation , C8 <: Container [C8 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 , i4 : C4 , i5 : C5 , i6 : C6 , i7 : C7 , i8 : C8 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 , e04 : C0 Compatible C4 , e05 : C0 Compatible C5 , e06 : C0 Compatible C6 , e07 : C0 Compatible C7 , e08 : C0 Compatible C8 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, new Branching (0.0 , i8, BranchingNil ))))))))).asInstanceOf [Agg ])
98
+ def Branch [C0 <: Container [C0 ] with Aggregation , C1 <: Container [C1 ] with Aggregation , C2 <: Container [C2 ] with Aggregation , C3 <: Container [C3 ] with Aggregation , C4 <: Container [C4 ] with Aggregation , C5 <: Container [C5 ] with Aggregation , C6 <: Container [C6 ] with Aggregation , C7 <: Container [C7 ] with Aggregation , C8 <: Container [C8 ] with Aggregation , C9 <: Container [C9 ] with Aggregation ](i0 : C0 , i1 : C1 , i2 : C2 , i3 : C3 , i4 : C4 , i5 : C5 , i6 : C6 , i7 : C7 , i8 : C8 , i9 : C9 )(implicit e01 : C0 Compatible C1 , e02 : C0 Compatible C2 , e03 : C0 Compatible C3 , e04 : C0 Compatible C4 , e05 : C0 Compatible C5 , e06 : C0 Compatible C6 , e07 : C0 Compatible C7 , e08 : C0 Compatible C8 , e09 : C0 Compatible C9 ) = histogrammar(new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, new Branching (0.0 , i8, new Branching (0.0 , i9, BranchingNil )))))))))).asInstanceOf [Agg ])
99
+
100
+ def Categorize [V <: Container [V ] with Aggregation {type Datum >: Row }](quantity : UserFcn [Row , String ], value : => V = Count ()) = histogrammar(org.dianahep.histogrammar.Categorize [Row , V ](quantity, value))
101
+
102
+ def CentrallyBin [V <: Container [V ] with Aggregation {type Datum >: Row }, N <: Container [N ] with Aggregation {type Datum >: Row }](bins : Iterable [Double ], quantity : UserFcn [Row , Double ], value : => V = Count (), nanflow : N = Count ()) = histogrammar(org.dianahep.histogrammar.CentrallyBin [Row , V , N ](bins, quantity, value, nanflow))
103
+
104
+ def Count (transform : UserFcn [Double , Double ] = org.dianahep.histogrammar.Count .Identity ) = histogrammar(org.dianahep.histogrammar.Count (transform).asInstanceOf [CONTAINER forSome {type CONTAINER <: Container [CONTAINER ] with Aggregation {type Datum = Row }}])
105
+
106
+ def Deviate (quantity : UserFcn [Row , Double ]) = histogrammar(org.dianahep.histogrammar.Deviate [Row ](quantity))
107
+
108
+ def Fraction [V <: Container [V ] with Aggregation {type Datum >: Row }](quantity : UserFcn [Row , Double ], value : => V = Count ()) = histogrammar(org.dianahep.histogrammar.Fraction [Row , V ](quantity, value))
109
+
110
+ def Index [V <: Container [V ] with Aggregation ](values : V * ) = histogrammar(org.dianahep.histogrammar.Index [V ](values : _* ).asInstanceOf [Agg ])
111
+
112
+ def IrregularlyBin [V <: Container [V ] with Aggregation {type Datum >: Row }, N <: Container [N ] with Aggregation {type Datum >: Row }](bins : Iterable [Double ], quantity : UserFcn [Row , Double ], value : => V = Count (), nanflow : N = Count ()) = histogrammar(org.dianahep.histogrammar.IrregularlyBin [Row , V , N ](bins, quantity, value, nanflow))
113
+
114
+ def Label [V <: Container [V ] with Aggregation ](pairs : (String , V )* ) = histogrammar(org.dianahep.histogrammar.Label [V ](pairs : _* ).asInstanceOf [Agg ])
115
+
116
+ def Minimize (quantity : UserFcn [Row , Double ]) = histogrammar(org.dianahep.histogrammar.Minimize [Row ](quantity))
117
+
118
+ def Maximize (quantity : UserFcn [Row , Double ]) = histogrammar(org.dianahep.histogrammar.Maximize [Row ](quantity))
119
+
120
+ def Select [V <: Container [V ] with Aggregation {type Datum >: Row }](quantity : UserFcn [Row , Double ], cut : V = Count ()) = histogrammar(org.dianahep.histogrammar.Select [Row , V ](quantity, cut))
121
+
122
+ def SparselyBin [V <: Container [V ] with Aggregation {type Datum >: Row }, N <: Container [N ] with Aggregation {type Datum >: Row }](binWidth : Double , quantity : UserFcn [Row , Double ], value : => V = Count (), nanflow : N = Count (), origin : Double = 0.0 ) = histogrammar(org.dianahep.histogrammar.SparselyBin [Row , V , N ](binWidth, quantity, value, nanflow, origin))
123
+
124
+ def Stack [V <: Container [V ] with Aggregation {type Datum >: Row }, N <: Container [N ] with Aggregation {type Datum >: Row }](bins : Iterable [Double ], quantity : UserFcn [Row , Double ], value : => V = Count (), nanflow : N = Count ()) = histogrammar(org.dianahep.histogrammar.Stack [Row , V , N ](bins, quantity, value, nanflow))
125
+
126
+ def Sum (quantity : UserFcn [Row , Double ]) = histogrammar(org.dianahep.histogrammar.Sum [Row ](quantity))
127
+
128
+ def UntypedLabel [F <: Container [F ] with Aggregation ](first : (String , F ), rest : (String , Container [_] with Aggregation )* ) = histogrammar(org.dianahep.histogrammar.UntypedLabel [Row , F ](first, rest : _* ).asInstanceOf [Agg ])
77
129
}
78
130
}
79
131
80
132
package sparksql .pyspark {
81
- import scala .language .existentials
82
133
import sparksql ._
83
134
84
135
class AggregatorConverter {
85
136
type Agg = C forSome {type C <: Container [C ] with Aggregation {type Datum >: Row }}
86
137
87
- def average (quantity : Column ) = Average [Row ](quantity)
138
+ def Average (quantity : Column ) = org.dianahep.histogrammar. Average [Row ](quantity)
88
139
89
- def bag (quantity : Column , range : String ) = range match {
90
- case " N" => Bag [Row , Double ](quantity, range)
91
- case " S" => Bag [Row , String ](quantity, range)
92
- case _ => Bag [Row , Seq [Double ]](quantity, range)
140
+ def Bag (quantity : Column , range : String ) = range match {
141
+ case " N" => org.dianahep.histogrammar. Bag [Row , Double ](quantity, range)
142
+ case " S" => org.dianahep.histogrammar. Bag [Row , String ](quantity, range)
143
+ case _ => org.dianahep.histogrammar. Bag [Row , Seq [Double ]](quantity, range)
93
144
}
94
145
95
- def bin (num : Int , low : Double , high : Double , quantity : Column , value : Agg , underflow : Agg , overflow : Agg , nanflow : Agg ) =
96
- Bin (num, low, high, quantity, value.copy, underflow, overflow, nanflow)
146
+ def Bin (num : Int , low : Double , high : Double , quantity : Column , value : Agg , underflow : Agg , overflow : Agg , nanflow : Agg ) =
147
+ org.dianahep.histogrammar. Bin (num, low, high, quantity, value.copy, underflow, overflow, nanflow)
97
148
98
- def branch (i0 : Agg ) = new Branching (0.0 , i0, BranchingNil )
99
- def branch (i0 : Agg , i1 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, BranchingNil ))
100
- def branch (i0 : Agg , i1 : Agg , i2 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, BranchingNil )))
101
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, BranchingNil ))))
102
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, BranchingNil )))))
103
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, BranchingNil ))))))
104
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, BranchingNil )))))))
105
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg , i7 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, BranchingNil ))))))))
106
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg , i7 : Agg , i8 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, new Branching (0.0 , i8, BranchingNil )))))))))
107
- def branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg , i7 : Agg , i8 : Agg , i9 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, new Branching (0.0 , i8, new Branching (0.0 , i9, BranchingNil ))))))))))
149
+ def Branch (i0 : Agg ) = new Branching (0.0 , i0, BranchingNil )
150
+ def Branch (i0 : Agg , i1 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, BranchingNil ))
151
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, BranchingNil )))
152
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, BranchingNil ))))
153
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, BranchingNil )))))
154
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, BranchingNil ))))))
155
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, BranchingNil )))))))
156
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg , i7 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, BranchingNil ))))))))
157
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg , i7 : Agg , i8 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, new Branching (0.0 , i8, BranchingNil )))))))))
158
+ def Branch (i0 : Agg , i1 : Agg , i2 : Agg , i3 : Agg , i4 : Agg , i5 : Agg , i6 : Agg , i7 : Agg , i8 : Agg , i9 : Agg ) = new Branching (0.0 , i0, new Branching (0.0 , i1, new Branching (0.0 , i2, new Branching (0.0 , i3, new Branching (0.0 , i4, new Branching (0.0 , i5, new Branching (0.0 , i6, new Branching (0.0 , i7, new Branching (0.0 , i8, new Branching (0.0 , i9, BranchingNil ))))))))))
108
159
109
- def categorize (quantity : Column , value : Agg ) = Categorize (quantity, value.copy)
160
+ def Categorize (quantity : Column , value : Agg ) = org.dianahep.histogrammar. Categorize (quantity, value.copy)
110
161
111
- def centrallyBin (bins : java.lang.Iterable [Double ], quantity : Column , value : Agg , nanflow : Agg ) = CentrallyBin (bins, quantity, value.copy, nanflow)
162
+ def CentrallyBin (bins : java.lang.Iterable [Double ], quantity : Column , value : Agg , nanflow : Agg ) = org.dianahep.histogrammar. CentrallyBin (bins, quantity, value.copy, nanflow)
112
163
113
- def count () = Count () // TODO: handle transform
164
+ def Count () = org.dianahep.histogrammar. Count () // TODO: handle transform
114
165
115
- def deviate (quantity : Column ) = Deviate (quantity)
166
+ def Deviate (quantity : Column ) = org.dianahep.histogrammar. Deviate (quantity)
116
167
117
- def fraction (quantity : Column , value : Agg ) = Fraction (quantity, value.copy)
168
+ def Fraction (quantity : Column , value : Agg ) = org.dianahep.histogrammar. Fraction (quantity, value.copy)
118
169
119
- def index (values : java.lang.Iterable [Agg ]) = Index (values.toSeq: _* )
170
+ def Index (values : java.lang.Iterable [Agg ]) = org.dianahep.histogrammar. Index (values.toSeq: _* )
120
171
121
- def irregularlyBin (bins : java.lang.Iterable [Double ], quantity : Column , value : Agg , nanflow : Agg ) = IrregularlyBin (bins, quantity, value.copy, nanflow)
172
+ def IrregularlyBin (bins : java.lang.Iterable [Double ], quantity : Column , value : Agg , nanflow : Agg ) = org.dianahep.histogrammar. IrregularlyBin (bins, quantity, value.copy, nanflow)
122
173
123
- def label (pairs : java.lang.Iterable [(String , Agg )]) = new Labeling (0.0 , pairs.toSeq.asInstanceOf [Seq [(String , Averaging [Row ])]]: _* )
174
+ def Label (pairs : java.lang.Iterable [(String , Agg )]) = new Labeling (0.0 , pairs.toSeq.asInstanceOf [Seq [(String , Averaging [Row ])]]: _* )
124
175
125
- def maximize (quantity : Column ) = Maximize (quantity)
176
+ def Maximize (quantity : Column ) = org.dianahep.histogrammar. Maximize (quantity)
126
177
127
- def minimize (quantity : Column ) = Minimize (quantity)
178
+ def Minimize (quantity : Column ) = org.dianahep.histogrammar. Minimize (quantity)
128
179
129
- def select (quantity : Column , cut : Agg ) = Select (quantity, cut)
180
+ def Select (quantity : Column , cut : Agg ) = org.dianahep.histogrammar. Select (quantity, cut)
130
181
131
- def sparselyBin (binWidth : Double , quantity : Column , value : Agg , nanflow : Agg , origin : Double ) = SparselyBin (binWidth, quantity, value.copy, nanflow, origin)
182
+ def SparselyBin (binWidth : Double , quantity : Column , value : Agg , nanflow : Agg , origin : Double ) = org.dianahep.histogrammar. SparselyBin (binWidth, quantity, value.copy, nanflow, origin)
132
183
133
- def stack (bins : java.lang.Iterable [Double ], quantity : Column , value : Agg , nanflow : Agg ) = Stack (bins, quantity, value.copy, nanflow)
184
+ def Stack (bins : java.lang.Iterable [Double ], quantity : Column , value : Agg , nanflow : Agg ) = org.dianahep.histogrammar. Stack (bins, quantity, value.copy, nanflow)
134
185
135
- def sum (quantity : Column ) = Sum (quantity)
186
+ def Sum (quantity : Column ) = org.dianahep.histogrammar. Sum (quantity)
136
187
137
- def untypedLabel (pairs : java.lang.Iterable [(String , Agg )]) = new UntypedLabeling (0.0 , pairs.head.asInstanceOf [(String , Averaging [Row ])], pairs.tail.toSeq.asInstanceOf [Seq [(String , Averaging [Row ])]]: _* )
188
+ def UntypedLabel (pairs : java.lang.Iterable [(String , Agg )]) = new UntypedLabeling (0.0 , pairs.head.asInstanceOf [(String , Averaging [Row ])], pairs.tail.toSeq.asInstanceOf [Seq [(String , Averaging [Row ])]]: _* )
138
189
}
139
190
}
0 commit comments