-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
387 lines (300 loc) · 14.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/python
# -*- coding: utf-8 -*-
import cv2
import os
import time
import torch
import datetime
import numpy as np
import shutil
import math
import torch.nn as nn
from io import BytesIO
from torch.autograd import Variable
from torchvision.utils import save_image
from sagan_models import Generator, Discriminator
from utils import *
class Trainer(object):
def __init__(self, data_loader, config):
# Data loader
self.data_loader = data_loader
# exact model and loss
self.model = config.model
self.adv_loss = config.adv_loss
# Model hyper-parameters
self.imsize = config.imsize
self.g_num = config.g_num
self.z_dim = config.z_dim
self.g_conv_dim = config.g_conv_dim
self.d_conv_dim = config.d_conv_dim
self.parallel = config.parallel
self.lambda_gp = config.lambda_gp
self.total_step = config.total_step
self.d_iters = config.d_iters
self.batch_size = config.batch_size
self.num_workers = config.num_workers
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.lr_decay = config.lr_decay
self.beta1 = config.beta1
self.beta2 = config.beta2
self.pretrained_model = config.pretrained_model
self.dataset = config.dataset
self.use_tensorboard = config.use_tensorboard
self.image_path = config.image_path
self.log_path = config.log_path
self.model_save_path = config.model_save_path
self.sample_path = config.sample_path
self.log_step = config.log_step
self.sample_step = config.sample_step
self.model_save_step = config.model_save_step
self.version = config.version
# Path
self.log_path = os.path.join(config.log_path, self.version)
self.sample_path = os.path.join(config.sample_path,
self.version)
self.model_save_path = os.path.join(config.model_save_path,
self.version)
self.build_model()
if self.use_tensorboard:
self.build_tensorboard()
# Start with trained model
if self.pretrained_model:
self.load_pretrained_model()
def train(self):
# Data iterator
data_iter = iter(self.data_loader)
step_per_epoch = len(self.data_loader)
model_save_step = int(self.model_save_step * step_per_epoch)
# Fixed input for debugging
fixed_z = tensor2var(torch.normal(0, torch.ones([self.batch_size, self.z_dim])*3))
# Start with trained model
if self.pretrained_model:
start = self.pretrained_model + 1
else:
start = 0
# Start time
start_time = time.time()
i = 0
for step in range(start, self.total_step):
# ================== Train D ================== #
self.D.train()
self.G.train()
try:
(real_images, _) = next(data_iter)
except:
data_iter = iter(self.data_loader)
(real_images, _) = next(data_iter)
# Compute loss with real images
# dr1, dr2, df1, df2, gf1, gf2 are attention scores
real_images = tensor2var(real_images)
d_out_real = self.D(real_images)
if self.adv_loss == 'wgan-gp':
d_loss_real = -torch.mean(d_out_real)
elif self.adv_loss == 'hinge':
d_loss_real = torch.nn.ReLU()(1.0 - d_out_real).mean()
# apply Gumbel Softmax
z = tensor2var(torch.normal(0, torch.ones([real_images.size(0), self.z_dim])*3))
# (fake_images, gf1, gf2) = self.G(z)
(fake_images, gf2) = self.G(z)
if i < 1:
print('***** Result Image size now *****')
print(fake_images.size())
# print(gf1.size())
print(gf2.size())
i = i + 1
d_out_fake = self.D(fake_images)
if self.adv_loss == 'wgan-gp':
d_loss_fake = d_out_fake.mean()
elif self.adv_loss == 'hinge':
d_loss_fake = torch.nn.ReLU()(1.0 + d_out_fake).mean()
# Backward + Optimize
d_loss = d_loss_real + d_loss_fake
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
if self.adv_loss == 'wgan-gp':
# Compute gradient penalty
alpha = torch.rand(real_images.size(0), 1, 1,
1).cuda().expand_as(real_images)
interpolated = Variable(alpha * real_images.data + (1
- alpha) * fake_images.data, requires_grad=True)
out = self.D(interpolated)
grad = torch.autograd.grad(
outputs=out,
inputs=interpolated,
grad_outputs=torch.ones(out.size()).cuda(),
retain_graph=True,
create_graph=True,
only_inputs=True,
)[0]
grad = grad.view(grad.size(0), -1)
grad_l2norm = torch.sqrt(torch.sum(grad ** 2, dim=1))
d_loss_gp = torch.mean((grad_l2norm - 1) ** 2)
# Backward + Optimize
d_loss = self.lambda_gp * d_loss_gp
self.reset_grad()
d_loss.backward()
self.d_optimizer.step()
# ================== Train G and gumbel ================== #
# Create random noise
z = tensor2var(torch.normal(0, torch.ones([real_images.size(0), self.z_dim])*3))
# (fake_images, _, _) = self.G(z)
(fake_images, _) = self.G(z)
# Compute loss with fake images
g_out_fake = self.D(fake_images) # batch x n
if self.adv_loss == 'wgan-gp':
g_loss_fake = -g_out_fake.mean()
elif self.adv_loss == 'hinge':
g_loss_fake = -g_out_fake.mean()
self.reset_grad()
g_loss_fake.backward()
self.g_optimizer.step()
# Print out log info
if (step + 1) % self.log_step == 0:
elapsed = time.time() - start_time
elapsed = str(datetime.timedelta(seconds=elapsed))
print('Elapsed [{}], G_step [{}/{}], D_step[{}/{}], d_out_real: {:.4f}, ave_gamma_l4: {:.4f}'.format(
elapsed,
step + 1,
self.total_step,
step + 1,
self.total_step,
d_loss_real.data[0],
self.G.module.attn2.gamma.mean().data[0],
))
# (1) Log values of the losses (scalars)
info = {
'd_loss_real': d_loss_real.data[0],
'd_loss_fake': d_loss_fake.data[0],
'd_loss': d_loss.data[0],
'g_loss_fake': g_loss_fake.data[0],
# 'ave_gamma_l3': self.G.module.attn1.gamma.mean().data[0],
'ave_gamma_l4': self.G.module.attn2.gamma.mean().data[0],
}
for (tag, value) in info.items():
self.logger.scalar_summary(tag, value, step + 1)
# Sample images / Save and log
if (step + 1) % self.sample_step == 0:
# (2) Log values and gradients of the parameters (histogram)
for (net, name) in zip([self.G, self.D], ['G_', 'D_']):
for (tag, value) in net.named_parameters():
tag = name + tag.replace('.', '/')
self.logger.histo_summary(tag,
value.data.cpu().numpy(), step + 1)
# (3) Log the tensorboard
info = \
{'fake_images': (fake_images.view(fake_images.size())[:
16, :, :, :]).data.cpu().numpy(),
'real_images': (real_images.view(real_images.size())[:
16, :, :, :]).data.cpu().numpy()}
# (fake_images, at1, at2) = self.G(fixed_z)
(fake_images, at2) = self.G(fixed_z)
if (step + 1) % (self.sample_step * 10) == 0:
save_image(denorm(fake_images.data),
os.path.join(self.sample_path,
'{}_fake.png'.format(step + 1)))
# print('***** Fake Image size now *****')
# print('fake_images ', fake_images.size())
# print('at2 ', at2.size()) # B * N * N
at2_4d = at2.view(*(at2.size()[0], at2.size()[1], int(math.sqrt(at2.size()[2])), int(math.sqrt(at2.size()[2])))) # W * N * W * H
# print('at2_4d ', at2_4d.size())
at2_mean = at2_4d.mean(dim=1,keepdim=False) # B * W * H
# print('at2_mean ', at2_mean.size())
print('***** start create activation map *****')
attn_list = []
for i in range(at2.size()[0]):
# print('fake_images size: ',fake_images[i].size())
# print('at2 mean size', at2_mean[i].size())
f = BytesIO()
img = np.uint8(fake_images[i,:,:,:].mul(255).data.cpu().numpy())
a = np.uint8(at2_mean[i,:,:].mul(255).data.cpu().numpy())
# print('image: ', img.shape)
# print('a shape: ',a.shape)
im_image = img.reshape(img.shape[1],img.shape[2],img.shape[0])
im_attn = cv2.applyColorMap(a, cv2.COLORMAP_JET)
img_with_heatmap = np.float32(im_attn) + np.float32(im_image)
img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap)
attn_np = np.uint8((255 * img_with_heatmap).reshape(img_with_heatmap.shape[2],img_with_heatmap.shape[0],img_with_heatmap.shape[1]))
attn_torch = torch.from_numpy(attn_np)
# print('final attn image size: ', attn_torch.size())
attn_list.append(attn_torch.unsqueeze(0))
attn_images = torch.cat(attn_list)
print('attn images list: ',attn_images.size())
info['attn_images'] = (attn_images.view(attn_images.size())[:16, :, :, :]).numpy()
for (tag, image) in info.items():
self.logger.image_summary(tag, image, step + 1)
if (step + 1) % model_save_step == 0:
torch.save(self.G.state_dict(),
os.path.join(self.model_save_path,
'{}_G.pth'.format(step + 1)))
torch.save(self.D.state_dict(),
os.path.join(self.model_save_path,
'{}_D.pth'.format(step + 1)))
def build_model(self):
self.G = Generator(self.batch_size, self.imsize, self.z_dim,
self.g_conv_dim).cuda()
self.D = Discriminator(self.batch_size, self.imsize,
self.d_conv_dim).cuda()
if self.parallel:
self.G = nn.DataParallel(self.G)
self.D = nn.DataParallel(self.D)
# Loss and optimizer
# self.g_optimizer = torch.optim.Adam(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.g_optimizer = torch.optim.Adam(filter(lambda p: \
p.requires_grad, self.G.parameters()), self.g_lr,
[self.beta1, self.beta2])
self.d_optimizer = torch.optim.Adam(filter(lambda p: \
p.requires_grad, self.D.parameters()), self.d_lr,
[self.beta1, self.beta2])
self.c_loss = torch.nn.CrossEntropyLoss()
# print networks
print(self.G)
print(self.D)
def build_tensorboard(self):
from logger import Logger
#if os.path.exists(self.log_path):
# shutil.rmtree(self.log_path)
#os.makedirs(self.log_path)
self.logger = Logger(self.log_path)
def load_pretrained_model(self):
self.G.load_state_dict(torch.load(os.path.join(self.model_save_path,
'{}_G.pth'.format(self.pretrained_model))))
self.D.load_state_dict(torch.load(os.path.join(self.model_save_path,
'{}_D.pth'.format(self.pretrained_model))))
print('loaded trained models (step: {})..!'.format(self.pretrained_model))
def reset_grad(self):
self.d_optimizer.zero_grad()
self.g_optimizer.zero_grad()
def save_sample(self, data_iter):
(real_images, _) = next(data_iter)
save_image(denorm(real_images), os.path.join(self.sample_path,
'real.png'))
def save_gradient_images(self, gradient, file_name):
"""
Exports the original gradient image
Args:
gradient (np arr): Numpy array of the gradient with shape (3, 224, 224)
file_name (str): File name to be exported
"""
if not os.path.exists('attn2/results'):
os.makedirs('attn2/results')
# Normalize
gradient = gradient - gradient.min()
gradient /= gradient.max()
# Save image
path = os.path.join('attn2/results', file_name + '.jpg')
im = gradient
if isinstance(im, np.ndarray):
if len(im.shape) == 2:
im = np.expand_dims(im, axis=0)
if im.shape[0] == 1:
# Converting an image with depth = 1 to depth = 3, repeating the same values
# For some reason PIL complains when I want to save channel image as jpg without
# additional format in the .save()
im = np.repeat(im, 3, axis=0)
# Convert to values to range 1-255 and W,H, D
if im.shape[0] == 3:
im = im.transpose(1, 2, 0) * 255
im = Image.fromarray(im.astype(np.uint8))
im.save(path)