-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplete_experiment.py
394 lines (317 loc) · 14.1 KB
/
complete_experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# complete_experiment.py
import os
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
from tqdm import tqdm
from datetime import datetime
from typing import Dict, Tuple
# Ensure all imports are available
try:
from discrimination_model import DiscriminationDorsalNet, create_discrimination_pairs
from test_util import create_drifting_gratings
except ImportError as e:
print(f"Error importing required modules: {e}")
raise
class LesionExperimentModel(DiscriminationDorsalNet):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.lesion_mask = None
self.lesion_type = None
self.hooks = {}
self.register_hooks()
def register_hooks(self):
"""Register hooks for layer analysis"""
def get_activation(name):
def hook(model, input, output):
self.hooks[name] = output.detach()
return hook
self.s1.conv1.register_forward_hook(get_activation('layer01')) # V1
self.res1.register_forward_hook(get_activation('layer03')) # MT
self.res3.register_forward_hook(get_activation('layer04')) # MST
def apply_lesion(self, lesion_type='complete', lesion_size=0.5):
"""Apply V1 lesion"""
self.lesion_type = lesion_type
if lesion_type == 'none':
self.lesion_mask = None
return
v1_shape = self.s1.conv1.weight.shape
if lesion_type == 'complete':
self.lesion_mask = torch.zeros(v1_shape)
elif lesion_type == 'partial':
self.lesion_mask = torch.ones(v1_shape)
n_channels = int(v1_shape[0] * lesion_size)
self.lesion_mask[:n_channels] = 0
def forward(self, x1, x2=None):
"""Forward pass with lesion handling"""
if self.lesion_mask is not None and self.lesion_type != 'none':
original_weights = self.s1.conv1.weight.data.clone()
self.s1.conv1.weight.data *= self.lesion_mask.to(original_weights.device)
output = super().forward(x1, x2)
if self.lesion_mask is not None and self.lesion_type != 'none':
self.s1.conv1.weight.data = original_weights
return output
def analyze_model_layers(model, hooks, stimuli: torch.Tensor) -> Dict[str, Dict[str, np.ndarray]]:
"""Analyze layer properties"""
layers = {'layer01': 'V1', 'layer03': 'MT', 'layer04': 'MST'}
results = {}
for layer_key, layer_name in layers.items():
output = model(stimuli)
resp = hooks[layer_key]
resp_shape = resp.shape
num_filters = resp_shape[1]
OSI = np.zeros(num_filters)
DSI = np.zeros(num_filters)
preferred = np.zeros(num_filters)
response = np.zeros((num_filters, 16))
entropy = np.zeros(num_filters)
for filt in range(num_filters):
mean_resp = np.mean(resp[:, filt, :, :, :].detach().cpu().numpy(), (1,2,3))
mean_resp = mean_resp - np.min(mean_resp)
# Orientation selectivity
OSI[filt] = np.abs(np.sum(mean_resp * np.exp(2j * np.arange(16)/8 * np.pi)) /
np.abs(np.sum(mean_resp)))
# Preferred direction
preferred[filt] = np.argmax(mean_resp)
# Direction selectivity
cosine = np.cos(np.arange(16)/8 * np.pi - np.pi/8 * preferred[filt])
DSI[filt] = np.abs(np.sum(mean_resp * np.exp(2j * np.arange(16)/8 * np.pi) * cosine) /
np.abs(np.sum(mean_resp)))
response[filt,:] = mean_resp
# Response entropy
mean_resp_norm = mean_resp / np.sum(mean_resp)
entropy[filt] = -np.sum(mean_resp_norm * np.log(mean_resp_norm + 1e-6))
results[layer_name] = {
'response': response,
'OSI': OSI,
'DSI': DSI,
'preferred': preferred,
'entropy': entropy
}
return results
def train_model(model, device, n_epochs=20, batch_size=8, save_dir='training_results'):
"""Train model with detailed logging"""
os.makedirs(save_dir, exist_ok=True)
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
scaler = torch.amp.GradScaler()
metrics = {
'train_acc': [],
'train_loss': [],
'epoch_times': []
}
for epoch in range(n_epochs):
epoch_start = datetime.now()
model.train()
epoch_acc = []
epoch_loss = []
pbar = tqdm(range(100), desc=f'Epoch {epoch+1}/{n_epochs}')
for batch in pbar:
# Generate batch
stim1_batch = []
stim2_batch = []
label_batch = []
for _ in range(batch_size):
s1, s2, l = create_discrimination_pairs(device)
stim1_batch.append(s1)
stim2_batch.append(s2)
label_batch.append(l)
stim1_batch = torch.stack(stim1_batch)
stim2_batch = torch.stack(stim2_batch)
label_batch = torch.stack(label_batch)
with torch.amp.autocast(device_type='cuda'):
outputs = model(stim1_batch, stim2_batch)
loss = criterion(outputs, label_batch)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
with torch.no_grad():
predictions = torch.sigmoid(outputs)
acc = ((predictions > 0.5) == label_batch).float().mean()
epoch_acc.append(acc.item())
epoch_loss.append(loss.item())
pbar.set_postfix({'loss': f'{loss.item():.4f}',
'acc': f'{acc.item():.3f}'})
epoch_time = (datetime.now() - epoch_start).total_seconds()
metrics['train_acc'].append(np.mean(epoch_acc))
metrics['train_loss'].append(np.mean(epoch_loss))
metrics['epoch_times'].append(epoch_time)
print(f"Epoch {epoch}: Acc={metrics['train_acc'][-1]:.3f}, "
f"Loss={metrics['train_loss'][-1]:.4f}, Time={epoch_time:.1f}s")
# Save checkpoints
if (epoch + 1) % 5 == 0:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'metrics': metrics,
}, os.path.join(save_dir, f'checkpoint_epoch_{epoch+1}.pt'))
return metrics
def run_complete_experiment(experiment_dir='experiment_results'):
"""Run complete experimental pipeline"""
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
base_dir = os.path.join(experiment_dir, f'experiment_{timestamp}')
os.makedirs(base_dir, exist_ok=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Create test stimuli
print("\nGenerating test stimuli...")
test_stimuli = torch.tensor(create_drifting_gratings(radius=100, lx=16, lt=25))
test_stimuli = test_stimuli.to(device=device, dtype=torch.float)
test_stimuli = test_stimuli + 0.1 * torch.randn_like(test_stimuli)
# Define experimental conditions
conditions = {
'healthy': {'lesion_type': 'none'},
'acute_lesion': {'lesion_type': 'complete'},
'recovery': {'lesion_type': 'complete'} # Will be trained post-lesion
}
results = {}
for condition, lesion_config in conditions.items():
print(f"\n{'='*50}")
print(f"Processing {condition} condition...")
condition_dir = os.path.join(base_dir, condition)
os.makedirs(condition_dir, exist_ok=True)
# Initialize model
model = LesionExperimentModel().to(device)
# Apply lesion if needed
model.apply_lesion(**lesion_config)
# Train if needed
if condition in ['healthy', 'recovery']:
print(f"Training {condition} model...")
metrics = train_model(
model,
device,
save_dir=os.path.join(condition_dir, 'training')
)
# Plot training curves
plt.figure(figsize=(10, 5))
plt.plot(metrics['train_acc'], label='Accuracy')
plt.plot(metrics['train_loss'], label='Loss')
plt.title(f'{condition.capitalize()} Model Training')
plt.xlabel('Epoch')
plt.legend()
plt.savefig(os.path.join(condition_dir, 'training_curves.png'))
plt.close()
# Analyze layers
print(f"Analyzing {condition} model layers...")
model.eval()
with torch.no_grad():
layer_results = analyze_model_layers(model, model.hooks, test_stimuli)
results[condition] = layer_results
# Save model
torch.save(model.state_dict(),
os.path.join(condition_dir, f'{condition}_model.pt'))
# Plot layer-specific results
plot_layer_analysis(layer_results, condition, condition_dir)
# Plot condition comparisons
print("\nGenerating comparison plots...")
plot_condition_comparison(results, base_dir)
# Save complete results
torch.save(results, os.path.join(base_dir, 'complete_results.pt'))
print(f"\nExperiment complete! Results saved to {base_dir}")
return results
def plot_layer_analysis(results, condition, save_dir):
"""Plot detailed layer analysis"""
# Tuning curves
ori = (np.arange(16) - 8) * 180/8
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
for idx, layer in enumerate(['V1', 'MT', 'MST']):
if layer in results:
response = results[layer]['response']
preferred = results[layer]['preferred']
mean_resp = np.zeros(16)
for i in range(response.shape[0]):
mean_resp += np.roll(response[i,:], 8-int(preferred[i]))
mean_resp /= response.shape[0]
mean_resp_norm = mean_resp / np.max(mean_resp)
axes[idx].plot(ori, mean_resp_norm)
axes[idx].set_title(f'{condition} {layer}')
axes[idx].set_xlabel('Direction (deg)')
axes[idx].set_ylabel('Normalized response')
plt.tight_layout()
plt.savefig(os.path.join(save_dir, 'tuning_curves.png'))
plt.close()
# Selectivity distributions
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
for idx, layer in enumerate(['V1', 'MT', 'MST']):
if layer in results:
sns.histplot(data=results[layer]['OSI'], ax=axes[idx], label='OSI')
sns.histplot(data=results[layer]['DSI'], ax=axes[idx], label='DSI')
axes[idx].set_title(f'{layer} Selectivity')
axes[idx].legend()
plt.tight_layout()
plt.savefig(os.path.join(save_dir, 'selectivity_dist.png'))
plt.close()
def plot_condition_comparison(results, save_dir):
"""Plot comparisons across conditions"""
conditions = list(results.keys())
layers = ['V1', 'MT', 'MST']
metrics = ['OSI', 'DSI', 'entropy']
# Prepare data for plotting
plot_data = []
for condition in conditions:
for layer in layers:
for metric in metrics:
values = results[condition][layer][metric]
plot_data.extend([{
'Condition': condition,
'Layer': layer,
'Metric': metric,
'Value': val
} for val in values])
df = pd.DataFrame(plot_data)
# Plot comparisons
for metric in metrics:
plt.figure(figsize=(10, 6))
sns.boxplot(data=df[df['Metric'] == metric],
x='Layer', y='Value', hue='Condition')
plt.title(f'{metric} Comparison Across Conditions')
plt.savefig(os.path.join(save_dir, f'{metric}_comparison.png'))
plt.close()
def test_recovery_only(experiment_dir='recovery_test_results'):
"""Run only the recovery phase to test functionality"""
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
base_dir = os.path.join(experiment_dir, f'experiment_{timestamp}')
os.makedirs(base_dir, exist_ok=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
print("\nInitializing model for recovery test...")
model = LesionExperimentModel().to(device)
print("\nApplying lesion...")
model.apply_lesion(lesion_type='complete')
print(f"V1 weight mean after lesion: {model.s1.conv1.weight.data.abs().mean().item():.6f}")
print(f"V1 requires_grad: {model.s1.conv1.weight.requires_grad}")
print("\nStarting recovery training...")
metrics = train_model(
model,
device,
save_dir=os.path.join(base_dir, 'training'),
n_epochs=5 # Shorter training for test
)
print("\nAnalyzing final state...")
test_stimuli = torch.tensor(create_drifting_gratings(radius=100, lx=16, lt=25))
test_stimuli = test_stimuli.to(device=device, dtype=torch.float)
test_stimuli = test_stimuli + 0.1 * torch.randn_like(test_stimuli)
model.eval()
with torch.no_grad():
layer_results = analyze_model_layers(model, model.hooks, test_stimuli)
print("\nChecking final weights:")
print(f"V1 final weight mean: {model.s1.conv1.weight.data.abs().mean().item():.6f}")
return metrics, layer_results
if __name__ == "__main__":
print("Starting recovery test...")
try:
metrics, results = test_recovery_only()
print("Recovery test completed successfully!")
except Exception as e:
print(f"Error during recovery test: {e}")
import traceback
traceback.print_exc()
# if __name__ == "__main__":
# print("Starting complete V1 lesion experiment...")
# results = run_complete_experiment()