-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcollect.py
133 lines (113 loc) · 5.15 KB
/
collect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import argparse
import pandas as pd
import numpy as np
import h5py
from tqdm import tqdm
from functools import partial
from multiprocessing import Pool, cpu_count
import wf_func as wff
TRIALS = 5000
psr = argparse.ArgumentParser()
psr.add_argument('-o', dest='opt', type=str, help='output file')
psr.add_argument('ipt', type=str, help='input file')
psr.add_argument('--mu', type=str, help='mu file')
psr.add_argument('--sparse', type=str, help='LucyDDM file')
psr.add_argument('--ref', type=str, help='truth file')
psr.add_argument('-N', '--Ncpu', dest='Ncpu', type=int, default=25)
args = psr.parse_args()
# sample = pd.read_hdf(args.ipt, 'sample').set_index(['TriggerNo', 'ChannelID'])
# s_max = pd.read_hdf(args.ipt, 's_max').set_index(['TriggerNo', 'ChannelID'])
# index = pd.read_hdf(args.sparse, 'index').set_index(['TriggerNo', 'ChannelID'])
# mu = pd.read_hdf(args.mu, 'mu').set_index(['TriggerNo', 'ChannelID'])
# np.sort(, kind='stable', order=['TriggerNo', 'ChannelID'])
with h5py.File(args.ipt, 'r', libver='latest', swmr=True) as ipt:
s0 = ipt['sample']['s0'][:]
s_max = ipt['s_max'][:]
with h5py.File(args.mu, 'r', libver='latest', swmr=True) as ipt:
mu = ipt['mu'][:]
with h5py.File(args.sparse, 'r', libver='latest', swmr=True) as ipt:
A = ipt['A'][:]
cx = ipt['cx'][:]
index = ipt['index'][:]
s = ipt['s'][:]
tq = ipt['tq'][:]
z = ipt['z'][:]
l_e = len(index)
with h5py.File(args.ref, 'r', libver='latest', swmr=True) as ipt:
ent = ipt['Readout/Waveform'][:]
N = len(ent)
print('{} waveforms are computed'.format(N))
Mu = ipt['Readout/Waveform'].attrs['mu'].item()
Tau = ipt['Readout/Waveform'].attrs['tau'].item()
Sigma = ipt['Readout/Waveform'].attrs['sigma'].item()
gmu = ipt['SimTriggerInfo/PEList'].attrs['gmu'].item()
s_index = s0[s_max['s_max_index'] + np.arange(len(s_max['s_max'])) * TRIALS]
opdt = np.dtype([('TriggerNo', np.uint32), ('ChannelID', np.uint32),
('HitPosInWindow', np.float64), ('Charge', np.float64)])
sdtp = np.dtype([('TriggerNo', np.uint32), ('ChannelID', np.uint32),
('tscharge', np.float64), ('tswave', np.float64),
('mucharge', np.float64), ('muwave', np.float64),
('consumption', np.float64)])
def collect(a0, a1):
start = 0
dt = np.zeros(s_index.sum(), dtype=opdt)
ts = np.zeros(a1 - a0, dtype=sdtp)
for i in range(a0, a1):
l_t = index['l_t'][i]
tlist = tq['t_s'][i][:l_t]
mus = index['mus'][i]
sig2s = index['sig2s'][i]
sig2w = index['sig2w'][i]
y = ent[i]['Waveform'][index['a_wave'][i]:index['b_wave'][i]]
A_i = A[i][:index['b_wave'][i]-index['a_wave'][i], :l_t]
if s_index[i] == 0:
s_index[i] += 1
s = s_max['s_max'][i][:s_index[i]]
t, c = np.unique(np.sort(np.digitize(s, bins=np.arange(l_t)) - 1), return_counts=True)
c_star = np.zeros(l_t, dtype=int)
c_star[t] = c
zx = y - np.dot(A_i, mus * c_star)
Phi_s = wff.Phi(y, A_i, c_star, mus, sig2s, sig2w)
invPhi = np.linalg.inv(Phi_s)
xmmse_most = mus * c_star + np.matmul(np.diagflat(sig2s * c_star), np.matmul(A_i.T, np.matmul(invPhi, zx)))
pet = np.repeat(tlist[xmmse_most > 0], c_star[xmmse_most > 0])
cha = np.repeat(xmmse_most[xmmse_most > 0] / mus / c_star[xmmse_most > 0], c_star[xmmse_most > 0])
mu_i = (c_star > 0).sum()
t0_i, _ = wff.likelihoodt0(pet, char=cha, gmu=gmu, Tau=Tau, Sigma=Sigma, mode='all')
pet, cha = wff.clip(pet, cha, 0.0)
cha = cha * gmu
end = start + len(cha)
# ts['muwave'][i - a0] = mu[i]['mu']
ts['muwave'][i - a0] = s_max[i]['mu'] # use 2D MLE fitted mu
# ts['tswave'][i - a0] = mu[i]['t0'] # use Gibbs sampled t0
ts['tswave'][i - a0] = s_max[i]['t0'] # use 2D MLE fitted t0
ts['mucharge'][i - a0] = mu_i
ts['tscharge'][i - a0] = t0_i
ts['TriggerNo'][i - a0] = ent[i]['TriggerNo']
ts['ChannelID'][i - a0] = ent[i]['ChannelID']
ts['consumption'][i - a0] = s_max[i]['consumption']
dt['HitPosInWindow'][start:end] = pet
dt['Charge'][start:end] = cha
dt['TriggerNo'][start:end] = ent[i]['TriggerNo']
dt['ChannelID'][start:end] = ent[i]['ChannelID']
start = end
dt = np.sort(dt[:end], kind='stable', order=['TriggerNo', 'ChannelID'])
return dt, ts
if args.Ncpu == 1:
slices = [[0, N]]
else:
chunk = N // args.Ncpu + 1
slices = np.vstack((np.arange(0, N, chunk), np.append(np.arange(chunk, N, chunk), N))).T.astype(int).tolist()
# collect(3532, 3540)
with Pool(min(args.Ncpu, cpu_count())) as pool:
result = pool.starmap(partial(collect), slices)
dt = np.hstack([result[i][0] for i in range(len(slices))])
ts = np.hstack([result[i][1] for i in range(len(slices))])
with h5py.File(args.opt, 'w') as opt:
pedset = opt.create_dataset('photoelectron', data=dt, compression='gzip')
pedset.attrs['Method'] = 'fsmp'
pedset.attrs['mu'] = Mu
pedset.attrs['tau'] = Tau
pedset.attrs['sigma'] = Sigma
tsdset = opt.create_dataset('starttime', data=ts, compression='gzip')
print('The output file path is {}'.format(args.opt))