-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathPPONetwork.py
135 lines (108 loc) · 5.97 KB
/
PPONetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import tensorflow as tf
import numpy as np
from baselines.a2c.utils import fc
import joblib
class PPONetwork(object):
def __init__(self, sess, obs_dim, act_dim, name):
self.obs_dim = obs_dim
self.act_dim = act_dim
self.name = name
with tf.variable_scope(name):
X = tf.placeholder(tf.float32, [None, obs_dim], name="input")
available_moves = tf.placeholder(tf.float32, [None, act_dim], name="availableActions")
#available_moves takes form [0, 0, -inf, 0, -inf...], 0 if action is available, -inf if not.
activation = tf.nn.relu
h1 = activation(fc(X,'fc1', nh=512, init_scale=np.sqrt(2)))
h2 = activation(fc(h1,'fc2', nh=256, init_scale=np.sqrt(2)))
pi = fc(h2,'pi', act_dim, init_scale = 0.01)
#value function - share layer h1
h3 = activation(fc(h1,'fc3', nh=256, init_scale=np.sqrt(2)))
vf = fc(h3, 'vf', 1)[:,0]
availPi = tf.add(pi, available_moves)
def sample():
u = tf.random_uniform(tf.shape(availPi))
return tf.argmax(availPi - tf.log(-tf.log(u)), axis=-1)
a0 = sample()
el0in = tf.exp(availPi - tf.reduce_max(availPi, axis=-1, keep_dims=True))
z0in = tf.reduce_sum(el0in, axis=-1, keep_dims = True)
p0in = el0in / z0in
onehot = tf.one_hot(a0, availPi.get_shape().as_list()[-1])
neglogpac = -tf.log(tf.reduce_sum(tf.multiply(p0in, onehot), axis=-1))
def step(obs, availAcs):
a, v, neglogp = sess.run([a0, vf, neglogpac], {X:obs, available_moves:availAcs})
return a, v, neglogp
def value(obs, availAcs):
return sess.run(vf, {X:obs, available_moves:availAcs})
self.availPi = availPi
self.neglogpac = neglogpac
self.X = X
self.available_moves = available_moves
self.pi = pi
self.vf = vf
self.step = step
self.value = value
self.params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
def getParams():
return sess.run(self.params)
self.getParams = getParams
def loadParams(paramsToLoad):
restores = []
for p, loadedP in zip(self.params, paramsToLoad):
restores.append(p.assign(loadedP))
sess.run(restores)
self.loadParams = loadParams
def saveParams(path):
modelParams = sess.run(self.params)
joblib.dump(modelParams, path)
self.saveParams = saveParams
class PPOModel(object):
def __init__(self, sess, network, inpDim, actDim, ent_coef, vf_coef, max_grad_norm):
self.network = network
#placeholder variables
ACTIONS = tf.placeholder(tf.int32, [None], name='actionsPlaceholder')
ADVANTAGES = tf.placeholder(tf.float32, [None], name='advantagesPlaceholder')
RETURNS = tf.placeholder(tf.float32, [None], name='returnsPlaceholder')
OLD_NEG_LOG_PROB_ACTIONS = tf.placeholder(tf.float32,[None], name='oldNegLogProbActionsPlaceholder')
OLD_VAL_PRED = tf.placeholder(tf.float32,[None], name='oldValPlaceholder')
LEARNING_RATE = tf.placeholder(tf.float32,[], name='LRplaceholder')
CLIP_RANGE = tf.placeholder(tf.float32,[], name='cliprangePlaceholder')
l0 = network.availPi - tf.reduce_max(network.availPi, axis=-1, keep_dims=True)
el0 = tf.exp(l0)
z0 = tf.reduce_sum(el0, axis=-1, keep_dims=True)
p0 = el0 / z0
entropy = -tf.reduce_sum((p0+1e-8) * tf.log(p0+1e-8), axis=-1)
oneHotActions = tf.one_hot(ACTIONS, network.pi.get_shape().as_list()[-1])
neglogpac = -tf.log(tf.reduce_sum(tf.multiply(p0, oneHotActions), axis=-1))
def neglogp(state, actions, index):
return sess.run(neglogpac, {network.X: state, network.available_moves: actions, ACTIONS: index})
self.neglogp = neglogp
#define loss functions
#entropy loss
entropyLoss = tf.reduce_mean(entropy)
#value loss
v_pred = network.vf
v_pred_clipped = OLD_VAL_PRED + tf.clip_by_value(v_pred - OLD_VAL_PRED, -CLIP_RANGE, CLIP_RANGE)
vf_losses1 = tf.square(v_pred - RETURNS)
vf_losses2 = tf.square(v_pred_clipped - RETURNS)
vf_loss = 0.5 * tf.reduce_mean(tf.maximum(vf_losses1, vf_losses2))
#policy gradient loss
prob_ratio = tf.exp(OLD_NEG_LOG_PROB_ACTIONS - neglogpac)
pg_losses1 = -ADVANTAGES * prob_ratio
pg_losses2 = -ADVANTAGES * tf.clip_by_value(prob_ratio, 1.0-CLIP_RANGE, 1.0+CLIP_RANGE)
pg_loss = tf.reduce_mean(tf.maximum(pg_losses1, pg_losses2))
#total loss
loss = pg_loss + vf_coef*vf_loss - ent_coef*entropyLoss
params = network.params
grads = tf.gradients(loss, params)
if max_grad_norm is not None:
grads, grad_norm = tf.clip_by_global_norm(grads, max_grad_norm)
grads = list(zip(grads, params))
trainer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE, epsilon=1e-5)
_train = trainer.apply_gradients(grads)
def train(lr, cliprange, observations, availableActions, returns, actions, values, neglogpacs):
advs = returns - values
advs = (advs-advs.mean()) / (advs.std() + 1e-8)
inputMap = {network.X: observations, network.available_moves: availableActions, ACTIONS: actions, ADVANTAGES: advs, RETURNS: returns,
OLD_VAL_PRED: values, OLD_NEG_LOG_PROB_ACTIONS: neglogpacs, LEARNING_RATE: lr, CLIP_RANGE: cliprange}
return sess.run([pg_loss, vf_loss, entropyLoss, _train], inputMap)[:-1]
self.train = train