forked from AsWali/WNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
151 lines (116 loc) · 4.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 15 17:38:02 2018
@author: Tao Lin
Implementation of the W-Net unsupervised image segmentation architecture
"""
import argparse
import torch.nn as nn
import numpy as np
import time
import datetime
import torch
from torchvision import datasets, transforms
from utils.org_soft_n_cut_loss import batch_soft_n_cut_loss
from utils.soft_n_cut_loss import soft_n_cut_loss
import WNet
import matplotlib.pyplot as plt
parser = argparse.ArgumentParser(description='PyTorch Unsupervised Segmentation with WNet')
parser.add_argument('--name', metavar='name', default=str(datetime.datetime.now().strftime('%Y%m%d%H%M%S')), type=str,
help='Name of model')
parser.add_argument('--in_Chans', metavar='C', default=3, type=int,
help='number of input channels')
parser.add_argument('--squeeze', metavar='K', default=4, type=int,
help='Depth of squeeze layer')
parser.add_argument('--out_Chans', metavar='O', default=3, type=int,
help='Output Channels')
parser.add_argument('--epochs', metavar='e', default=100, type=int,
help='epochs')
parser.add_argument('--input_folder', metavar='f', default=None, type=str,
help='Folder of input images')
parser.add_argument('--output_folder', metavar='of', default=None, type=str,
help='folder of output images')
softmax = nn.Softmax2d()
criterionIdt = torch.nn.MSELoss()
def train_op(model, optimizer, input, k, img_size, psi=0.5):
enc = model(input, returns='enc')
d = enc.clone().detach()
n_cut_loss=soft_n_cut_loss(input, softmax(enc), img_size)
n_cut_loss.backward()
optimizer.step()
optimizer.zero_grad()
dec = model(input, returns='dec')
rec_loss=reconstruction_loss(input, dec)
rec_loss.backward()
optimizer.step()
optimizer.zero_grad()
return (model, n_cut_loss, rec_loss)
def reconstruction_loss(x, x_prime):
rec_loss = criterionIdt(x_prime, x)
return rec_loss
def test():
wnet=WNet.WNet(4)
synthetic_data=torch.rand((1, 3, 128, 128))
optimizer=torch.optim.SGD(wnet.parameters(), 0.001) #.cuda()
train_op(wnet, optimizer, synthetic_data)
def show_image(image):
img = image.numpy().transpose((1, 2, 0))
plt.imshow(img)
plt.show()
def main():
# Load the arguments
args, unknown = parser.parse_known_args()
# Check if CUDA is available
CUDA = torch.cuda.is_available()
# Create empty lists for average N_cut losses and reconstruction losses
n_cut_losses_avg = []
rec_losses_avg = []
# Squeeze k
k = args.squeeze
img_size = (224, 224)
wnet = WNet.WNet(k)
if(CUDA):
wnet = wnet.cuda()
learning_rate = 0.003
optimizer = torch.optim.SGD(wnet.parameters(), lr=learning_rate)
transform = transforms.Compose([transforms.Resize(img_size),
transforms.ToTensor()])
dataset = datasets.ImageFolder(args.input_folder, transform=transform)
# Train 1 image set batch size=1 and set shuffle to False
dataloader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
# Run for every epoch
for epoch in range(args.epochs):
# At 1000 epochs divide SGD learning rate by 10
if (epoch > 0 and epoch % 1000 == 0):
learning_rate = learning_rate/10
optimizer = torch.optim.SGD(wnet.parameters(), lr=learning_rate)
# Print out every epoch:
print("Epoch = " + str(epoch))
# Create empty lists for N_cut losses and reconstruction losses
n_cut_losses = []
rec_losses = []
start_time = time.time()
for (idx, batch) in enumerate(dataloader):
# Train 1 image idx > 1
# if(idx > 1): break
# Train Wnet with CUDA if available
if CUDA:
batch[0] = batch[0].cuda()
wnet, n_cut_loss, rec_loss = train_op(wnet, optimizer, batch[0], k, img_size)
n_cut_losses.append(n_cut_loss.detach())
rec_losses.append(rec_loss.detach())
n_cut_losses_avg.append(torch.mean(torch.FloatTensor(n_cut_losses)))
rec_losses_avg.append(torch.mean(torch.FloatTensor(rec_losses)))
print("--- %s seconds ---" % (time.time() - start_time))
images, labels = next(iter(dataloader))
# Run wnet with cuda if enabled
if CUDA:
images = images.cuda()
enc, dec = wnet(images)
torch.save(wnet.state_dict(), "model_" + args.name)
np.save("n_cut_losses_" + args.name, n_cut_losses_avg)
np.save("rec_losses_" + args.name, rec_losses_avg)
print("Done")
if __name__ == '__main__':
main()
# python .\train.py --e 100 --input_folder="data/images/" --output_folder="/output/"