-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-hf.py
222 lines (172 loc) · 6.54 KB
/
train-hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# import library
import argparse
import os
from random import shuffle, seed
import evaluate
import numpy as np
import pandas as pd
from PIL import Image
from datasets import Dataset, DatasetDict
from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor
from tqdm import tqdm
from transformers import AutoImageProcessor, AutoModelForImageClassification, TrainingArguments, Trainer, \
DefaultDataCollator
# argparse
parser = argparse.ArgumentParser(description='Train Model')
parser.add_argument('--metadata_path', type=str, default='./archive/HAM10000_metadata.csv',
help='path to metadata file')
parser.add_argument('--images_dir', type=str, default='./archive/HAM10000_images/',
help='path to images directory')
parser.add_argument('--model_dir', type=str, default='../model/vit-large-patch16-224-in21k',
help='path to pretrained model directory')
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints',
help='path to save model checkpoints')
parser.add_argument('--learning_rate', type=float, default=1e-5, help='learning rate')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--epochs', type=int, default=5, help='number of epochs to train for')
parser.add_argument('--warmup_ratio', type=float, default=0.1, help='ratio of warmup steps to total training steps')
parser.add_argument('--split', type=float, default=0.8, help='train-validation split ratio')
parser.add_argument('--gpu', type=str, default='0', help='CUDA visible devices')
parser.add_argument('--logging_steps', type=int, default='50', help='Print log per step')
args = parser.parse_args()
# hyperparameter
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
METADATA_PATH = args.metadata_path
IMAGES_DIR = args.images_dir
MODEL_DIR = args.model_dir
CHECKPOINTS_DIR = args.checkpoints_dir
LEARNING_RATE = args.learning_rate
BATCH_SIZE = args.batch_size
EPOCHS = args.epochs
WARMUP_RATIO = args.warmup_ratio
SPLIT = args.split
LOGGING_STEPS = args.logging_steps
RAW_PATH = "./archive/raw"
# utils functions
def ReadImage(dataframe: pd.DataFrame, images_path: str) -> list:
"""image_id: str -> PIL.Image"""
assert "image_id" in dataframe.columns and "dx" in dataframe.columns
lens, _ = dataframe.shape
postfix = ".jpg"
dataset = []
t = tqdm(range(lens))
for i in t:
t.set_description("Reading Image")
img = Image.open(images_path + dataframe['image_id'][i] + postfix)
dataset.append(
{
"image": img,
"label": dataframe['dx'][i]
}
)
img.close()
return dataset
def ReadRaw() -> list:
imgs = os.listdir(RAW_PATH)
dataset = []
t = tqdm(imgs)
for i in t:
t.set_description("Reading Raw Image")
img = Image.open(RAW_PATH + "/" + i)
dataset.append(
{
"image": img,
"label": 'not a cancer image'
}
)
img.close()
return dataset
def transforms(examples):
trans = _transforms()
examples["pixel_values"] = [trans(img.convert("RGB")) for img in examples["image"]]
examples["label"] = [LABEL2IDX[label] for label in examples["label"]]
del examples["image"]
return examples
def _transforms():
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std)
size = (
image_processor.size["shortest_edge"]
if "shortest_edge" in image_processor.size
else (image_processor.size["height"], image_processor.size["width"])
)
return Compose([RandomResizedCrop(size), ToTensor(), normalize])
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return acc.compute(predictions=predictions, references=labels)
# import dataset
# Actinic keratoses and intraepithelial carcinoma / Bowen's disease (akiec),
# basal cell carcinoma (bcc),
# benign keratosis-like lesions (solar lentigines / seborrheic keratoses and lichen-planus like keratoses, bkl),
# dermatofibroma (df),
# melanoma (mel),
# melanocytic nevi (nv),
# vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage, vasc).
# IDX2LABEL = dict(enumerate(set(df['dx'])))
IDX2LABEL = {0: 'vasc',
1: 'bcc',
2: 'mel',
3: 'nv',
4: 'df',
5: 'akiec',
6: 'bkl',
7: 'not a cancer image'}
# LABEL2IDX = {v: k for k, v in IDX2LABEL.items()}
LABEL2IDX = {'vasc': 0,
'bcc': 1,
'mel': 2,
'nv': 3,
'df': 4,
'akiec': 5,
'bkl': 6,
'not a cancer image': 7}
if __name__ == '__main__':
seed(114514)
df = pd.read_csv(METADATA_PATH, usecols=['image_id', 'dx'])
ds = ReadImage(dataframe=df, images_path=IMAGES_DIR)
shuffle(ds)
raw_ds = ReadRaw()
shuffle(raw_ds)
train_ds = ds[:int(SPLIT * len(ds))] + raw_ds[:int(SPLIT * len(raw_ds))]
dev_ds = ds[int(SPLIT * len(ds)):] + raw_ds[int(SPLIT * len(raw_ds)):]
ds = {
"train": Dataset.from_list(train_ds),
"dev": Dataset.from_list(dev_ds)
}
ds = DatasetDict(ds)
# preprocess dataset
image_processor = AutoImageProcessor.from_pretrained(MODEL_DIR)
ds = ds.with_transform(transforms)
data_collator = DefaultDataCollator()
# define metric
acc = evaluate.load("accuracy")
# import model
model = AutoModelForImageClassification.from_pretrained(MODEL_DIR,
num_labels=len(IDX2LABEL),
ignore_mismatched_sizes=True)
# train model
training_args = TrainingArguments(
output_dir=CHECKPOINTS_DIR,
remove_unused_columns=False,
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=LEARNING_RATE,
per_device_train_batch_size=BATCH_SIZE,
gradient_accumulation_steps=4,
per_device_eval_batch_size=BATCH_SIZE,
num_train_epochs=EPOCHS,
warmup_ratio=WARMUP_RATIO,
logging_steps=LOGGING_STEPS,
load_best_model_at_end=True,
metric_for_best_model="accuracy"
)
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=ds["train"],
eval_dataset=ds["dev"],
tokenizer=image_processor,
compute_metrics=compute_metrics,
)
trainer.train()