-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathweight_initializer.py
147 lines (134 loc) · 5.85 KB
/
weight_initializer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
import logging
import numpy as np
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
from scipy.special import softmax
logging.basicConfig(filename='example.log',level=logging.DEBUG)
class Weight():
def __init__(self, model, criterion, testloader, population_size = 10, tunable = True):
self.model = model
self.population_size = population_size
self.dims = self.get_dims()
self.loss_fn = criterion
self.testloader = testloader
self.population = self.initialize_population()
self.fitness = self.check_fitness()
self.fitness_probs = softmax(self.fitness)
self.tunable = tunable
## Get the dimensions of each weight matrix in the model
def get_dims(self):
dimensions = []
for p in self.model.parameters():
if p.requires_grad and len(p.size())>1:
dimensions.append(p.size())
return dimensions
## Use the dimesions to generate the initial population
def initialize_population(self):
population = []
for pop in range(self.population_size):
layer = []
for dim in self.dims:
#temp_tensor = torch.randn(dim) * torch.sqrt(torch.tensor(2 / dim[0]))
temp_tensor = torch.empty(dim)
nn.init.xavier_normal_(temp_tensor)
layer.append(temp_tensor)
population.append(layer)
return population
## Used to check fitness of the population
def check_fitness(self):
fitness_list = []
for pop_index in range(self.population_size):
fitness_list.append(self.fitness_of(self.population[pop_index]))
fitness_list = [p.item() for p in fitness_list]
return fitness_list
## Used to check fitness of one candidate
def fitness_of(self, child):
tensor_index = 0
state_dict = self.model.state_dict()
with torch.no_grad():
for key in state_dict:
if 'weight' in key:
state_dict[key] = nn.Parameter(child[tensor_index])
tensor_index += 1
self.model.load_state_dict(state_dict)
loss = 0
for data,y in self.testloader:
recon, mu, logvar = self.model(data, y)
loss += self.loss_fn(recon, data, mu, logvar).item()
return np.abs(loss/len(self.testloader))
## Decide to stop differential evolution or not
def early_stop(self, trend, num_values = 30):
fit = np.array(trend[-num_values:])
key = fit[0]
if np.sum(fit==key) == len(fit):
return True
return False
## Differential Mutation
def mutation(self, f = 0.4):
child = []
index_1 = np.random.randint(0, self.population_size)
index_2 = np.random.randint(0, self.population_size)
index_3 = np.random.randint(0, self.population_size)
parent_1 = self.population[index_1]
parent_2 = self.population[index_2]
parent_3 = self.population[index_3]
for tensor_index in range(len(parent_1)):
subparent_1 = parent_1[tensor_index]
subparent_2 = parent_2[tensor_index]
subparent_3 = parent_2[tensor_index]
subchild = subparent_1 + f * (subparent_2 - subparent_3)
child.append(subchild)
return child
## Crossover with a probability
def crossover(self, parent, child, cr = 0.8):
child_1 = []
for tensor_index in range(len(child)):
subparent_1 = parent[tensor_index]
subparent_2 = child[tensor_index]
prob_tensor = torch.rand(subparent_1[tensor_index].size())
mask_tensor = prob_tensor > cr
subchild_1 = (subparent_1 * mask_tensor) + (subparent_2 * ~mask_tensor)
child_1.append(subchild_1)
return child_1
## Applying the weights to the model
def apply_weights(self,pop_index):
tensor_index = 0
state_dict = self.model.state_dict()
with torch.no_grad():
for key in state_dict:
if 'weight' in key:
state_dict[key] = nn.Parameter(self.population[pop_index][tensor_index])
tensor_index += 1
self.model.load_state_dict(state_dict)
return self.model
## Start the differential evolution
def start(self, n_generations, n_weights = 1, verbose = True, warmup = 50):
trend = []
f = 0.4
for gen in range(n_generations):
for c in range(self.population_size):
parent = self.population[c]
child = self.mutation(f)
child = self.crossover(parent, child)
child_fitness = self.fitness_of(child)
if child_fitness < self.fitness[c]:
self.population[c] = child
self.fitness[c] = child_fitness
if verbose:
print("Generation {} Best Fitness {}".format(gen, min(self.fitness)))
logging.info("Generation {} Best Fitness {} Fitness std.{}".format(gen, min(self.fitness), np.std(self.fitness)))
#print(f"Fitness List: {self.fitness}")
trend.append(min(self.fitness))
if self.tunable and (np.std(self.fitness) < 1.2):
f = np.random.uniform(0.6, 1.0)
logging.info("F value changed")
print("f value changed")
if gen > warmup:
if self.early_stop(trend):
print("Early stopping initiated")
break
best_fitness = min(self.fitness)
self.apply_weights(self.fitness.index(best_fitness))
return trend