-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFind_VAE.py
115 lines (70 loc) · 2.41 KB
/
Find_VAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms
from torchvision.utils import save_image
from scipy.special import softmax
from cnas import *
from weight_initializer import *
import matplotlib.pyplot as plt
# In[2]:
batch_size = 64
transform = transforms.Compose([transforms.ToTensor()])
trainset = torchvision.datasets.MNIST('./mnist/', train=True,download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset,shuffle=True, num_workers=2, batch_size = batch_size)
testset = torchvision.datasets.MNIST('./mnist/', train=False,download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset,shuffle=False, num_workers=2, batch_size = batch_size)
# In[3]:
input_dim = 784
cond_dim = 10
# In[4]:
def loss_function(recon, x, mu, logvar):
BCE = F.binary_cross_entropy(recon, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
# In[5]:
population_size = 5
nas = NAS(input_dim, cond_dim, population_size, trainloader = trainloader, testloader = testloader)
# In[6]:
nas.start(3000)
# In[12]:
best_model = nas.best_model
weight_initialiser = Weight(best_model, loss_function, trainloader, tunable = False)
# In[13]:
n_generations = 1000
ascent = weight_initialiser.start(n_generations)
# In[ ]:
best_weight_loss = []
model = weight_initialiser.model
epochs = 100
running_loss = 0.0
optimizer = torch.optim.Adam(model.parameters(), lr= 0.001)
for epoch in range(epochs):
running_loss = 0.0
for i, data in enumerate(trainloader):
x, y = data
#x, y = x.cuda(), y.cuda()
optimizer.zero_grad()
recon, mu, logvar = model(x, y)
BCE = F.binary_cross_entropy(recon, x.view(-1, 784), reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
loss = BCE + KLD
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99: # print every 100 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
best_weight_loss.append(running_loss)
running_loss = 0.0
# In[14]:
PATH = 'nas.pt'
torch.save(nas,PATH)
# In[ ]:
PATH = 'vae.pt'
torch.save(model,PATH)