-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cnn.py
67 lines (57 loc) · 2.72 KB
/
train_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from tensorflow.keras import Sequential
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.layers import Input,Activation,Dense,Conv2D,MaxPool2D,Flatten
from tensorflow.keras.optimizers import Adam,RMSprop,SGD
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from sklearn.model_selection import train_test_split
import pickle
import numpy as np
# Data Loading
with open('images.pkl','rb') as f:
images = pickle.load(f)
with open('labels.pkl','rb') as f:
labels = pickle.load(f)
X_train,X_test,y_train,y_test = train_test_split(images,labels,test_size = 0.3,random_state = 10)
datagen = ImageDataGenerator(rotation_range=15,
width_shift_range=0.1,
height_shift_range=0.1,
shear_range=0.01,
zoom_range=[0.9, 1.25],
horizontal_flip=True,
vertical_flip=False,
fill_mode='reflect',
data_format='channels_last',
brightness_range=[0.5, 1.5])
datagen.fit(X_train)
# Model Building
model = Sequential()
model.add(Conv2D(32,kernel_size=(3,3),input_shape=(224,224,1),padding='valid',activation='relu'))
model.add(Conv2D(64,kernel_size=(3,3),padding='valid',activation='relu'))
model.add(MaxPool2D(3))
model.add(Conv2D(128,kernel_size=(3,3),padding='valid',activation='relu'))
model.add(Conv2D(128,kernel_size=(3,3),padding='valid',activation='relu'))
model.add(MaxPool2D(3))
model.add(Conv2D(256,kernel_size=(3,3),padding='valid',activation='relu'))
model.add(MaxPool2D(2))
model.add(Conv2D(256,kernel_size=(3,3),padding='valid',activation='relu'))
model.add(Conv2D(256,kernel_size=(3,3),padding='valid',activation='relu'))
model.add(MaxPool2D(3))
model.add(Flatten())
model.add(Dense(1000))
model.add(Activation('relu'))
model.add(Dense(2000))
model.add(Activation('relu'))
model.add(Dense(14,activation='relu'))
learning_rate_reduction = ReduceLROnPlateau(monitor='loss',
patience=3,
verbose=1,
factor=0.5,
min_lr=0.00001)
model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.0001), metrics=['acc'])
epochs = 10
batch_size = 10
model.fit_generator(datagen.flow(X_train,y_train, batch_size=batch_size),
epochs = epochs,verbose = 1, steps_per_epoch=150000,
callbacks=[learning_rate_reduction])
model.save("cnn_model.h5")
print(model.evaluate(X_test,y_test))