-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pgm.py
109 lines (85 loc) · 3.37 KB
/
test_pgm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from pgmpy.estimators import HillClimbSearch, BicScore
from pgmpy.models import BayesianModel
from pgmpy.factors.discrete import TabularCPD
import networkx as nx
import pandas as pd
from networkx.drawing.nx_pylab import draw_networkx
from networkx.algorithms.cycles import find_cycle
import random
from sklearn.metrics import accuracy_score
import numpy as np
import re
from tensorflow.keras.models import load_model
from tensorflow.keras import Model
from tensorflow.keras.preprocessing.image import load_img,img_to_array
import pickle
df = pd.read_csv('valid.csv')
def regex_path(path):
if 'study1' not in path:
return False
return True
path= df['Path'].apply(regex_path)
study1_df = df[path]
study1_frontal_df = study1_df[study1_df['Frontal/Lateral'] == 'Frontal']
extra_feartures = ['Age','Sex','No Finding','Enlarged Cardiomediastinum','Cardiomegaly',
'Lung Opacity','Lung Lesion','Edema','Consolidation','Pneumonia','Atelectasis',
'Pneumothorax','Pleural Other','Fracture','Support Devices']
features = study1_frontal_df[extra_feartures].fillna(0)
img_size = 224 * 224 *1
model = load_model('conv_autoencoder.h5')
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer('dense').output)
intermediate_layer_model.summary()
encoded_images = []
labels = []
for j,i in study1_frontal_df.iterrows():
img = load_img(i['Path'], grayscale = True, target_size=(224,224))
img = img_to_array(img)
img.resize(1,224,224,1)
encoded = intermediate_layer_model.predict(img, steps = None)
if j%1000 == 0:
print(j)
encoded_images.append(encoded)
encoded_images = np.array(encoded_images)
encoded_images.shape = (encoded_images.shape[0], 128)
column_size = 128
column_prefix = 'int_'
columns = []
for i in range(1,column_size+1):
columns.append(column_prefix+str(i))
df = pd.DataFrame(encoded_images, columns = columns)
with open('bayes_model_pgmpy_2(243).pkl','rb') as f:
model = pickle.load(f)
index = [i for i in range(encoded_images.shape[0])]
features['index']=index
features = features.set_index('index')
final_df = pd.concat([df.reindex(),features.reindex()],axis = 1, ignore_index=True)
final_df.columns = columns + extra_feartures
final_df.to_csv('conv_encoded_valid_images_128.csv',index = False)
df = pd.read_csv('conv_encoded_valid_images_128.csv')
label_cols = ['No Finding','Enlarged Cardiomediastinum','Cardiomegaly',
'Lung Opacity','Lung Lesion','Edema','Consolidation','Pneumonia','Atelectasis',
'Pneumothorax','Pleural Other','Fracture','Support Devices']
test_df = df[list(model.nodes())]
#for col in label_cols:
# pred = []
# for i in range(len(test_df)):
# test = pd.DataFrame(test_df.loc[i])
# test = test.T
# test = test.drop(col,axis=1)
# prediction = model.predict(test)
# pred.append(prediction[col][0])
# true = df[col]
# acc_score = accuracy_score(true,pred)
# print("Accuracy "+col+" :",acc_score)
for i in range(len(test_df)):
test = pd.DataFrame(test_df.loc[i])
test = test.T
test = test.drop(label_cols,axis=1)
prediction = model.predict(test)
pred.append(prediction.values[0])
pred = np.array(pred)
pred.shape = (len(pred),13)
pred_df = pd.DataFrame(pred,columns = label_cols)
pred_df.to_csv('pred.csv',index = False)
print("Finished")