-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrejection_sampling.py
44 lines (35 loc) · 1.65 KB
/
rejection_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
import pandas as pd
import pickle
from pgmpy.sampling import GibbsSampling
from pgmpy.models import MarkovModel, BayesianModel
from pgmpy.sampling import BayesianModelSampling
from pgmpy.factors.discrete import State
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import networkx as nx
from networkx.drawing.nx_pylab import draw_networkx
from networkx.algorithms.cycles import find_cycle
from pgmpy.estimators import BdeuScore, K2Score, BicScore
def get_accuracy(model,X_test,y_test):
pred = model.predict(X_test)
return accuracy_score(y_test,pred)
columns = ['Consolidation','Fracture','Pneumothorax','Lung Lesion','Enlarged Cardiomediastinum',
'Pneumonia','Pleural Other','No Finding','Cardiomegaly','Lung Opacity',
'Edema','Pleural Effusion','Atelectasis','Support Devices']
string_cols = ['Sex', 'Age', 'labels']
for column in columns:
print(column)
filename = "_".join([w.lower() for w in column.split(" ")])
sample_df = pd.read_csv('rejection_sampled_'+filename+'.csv')
feat_cols = sample_df.columns[sample_df.columns!='labels']
X_train,X_test,y_train,y_test = train_test_split(sample_df[feat_cols],sample_df['labels'],test_size = 0.3,random_state = 43)
X_train[column] = y_train
with open('rejection_bayes_'+filename.lower()+'_model.pkl','rb') as f:
model = pickle.load(f)
accuracy = get_accuracy(model,X_train[feat_cols],X_train[column])
print("Training")
print("Accuracy",accuracy)
accuracy = get_accuracy(model,X_test,y_test)
print("Testing")
print("Accuracy",accuracy)