-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfit_gmm.py
52 lines (45 loc) · 1.47 KB
/
fit_gmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
import numpy as np
import pickle
from sklearn.mixture import GaussianMixture
import cv2
def hpf(img,r):
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
rows, cols = img.shape
crow,ccol = rows/2 , cols/2
mask = np.ones((rows,cols,2),np.uint8)
mask[int(crow-r):int(crow+r), int(ccol-r):int(ccol+r)] = 0
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
return img_back
df = pd.read_csv('CheXpert-v1.0-small/train.csv')
img_path = df['Path'][df['Frontal/Lateral']=='Frontal']
images = []
for i in img_path:
img = cv2.imread(i,0)
img = cv2.resize(img,(224,224))
hpf_img = hpf(img,1)
hpf_img.resize(hpf_img.shape[0] * hpf_img.shape[1],1)
images.append(hpf_img)
n_components = 6
gmm = GaussianMixture(n_components)
gmm.fit(images)
with open('gmm_frontal_6.pkl','wb') as f:
pickle.dump(gmm,f,protocol=4)
img_path = df['Path'][df['Frontal/Lateral']=='Lateral']
images = []
for i in img_path:
img = cv2.imread(i,0)
img = cv2.resize(img,(224,224))
hpf_img = hpf(img,1)
hpf_img.resize(hpf_img.shape[0] * hpf_img.shape[1],1)
images.append(hpf_img)
n_components = 6
gmm = GaussianMixture(n_components)
gmm.fit(images)
with open('gmm_lateral_6.pkl','wb') as f:
pickle.dump(gmm,f,protocol=4)