-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder2.py
64 lines (48 loc) · 2.1 KB
/
autoencoder2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, Flatten, Reshape
from tensorflow.keras.models import Model
from sklearn.model_selection import train_test_split
from tensorflow.keras.callbacks import ReduceLROnPlateau
from tensorflow.keras.optimizers import Adam,RMSprop,SGD
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import pickle
import numpy as np
img_size = 224 * 224 *1
with open('images.pkl','rb') as f:
images = pickle.load(f)
with open('labels.pkl','rb') as f:
labels = pickle.load(f)
#images = images.reshape(-1,img_size)
images = images/255.0
print(tf.config.experimental.list_physical_devices('GPU'))
epochs = 10
X_train,X_test,y_train,y_test = train_test_split(images,labels,test_size = 0.3,random_state = 10)
encoding_dim = 32
batch_size = 128
input_signal = Input(shape=(224, 224, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_signal)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same', name='encoder')(x)
encoded2 = Flatten()(encoded)
encoded2 = Dense(encoding_dim, activation='sigmoid')(encoded2)
encoded2 = Dense(6272, activation='softmax')(encoded2)
encoded3 = Reshape((28, 28, 8))(encoded2)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded3)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = Model(inputs=input_signal, outputs=decoded)
encoder = Model(input_signal, encoded2)
autoencoder.compile(optimizer='adam', loss='binary_crossentropy')
print(autoencoder.summary())
autoencoder.fit(X_train, X_train,
epochs=epochs,
batch_size=batch_size,
shuffle=True)
autoencoder.save("conv_autoencoder2.h5")