-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
89 lines (69 loc) · 3.06 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
# probability (P) array for a single two-dice throw (landing on 1:12) excluding doubles
throw1 = (1/36)*np.array([0, 0, 2, 2, 4, 4, 6, 4, 4, 2, 2, 0])
# P array for up to 2 throws (landing on 1:24) excluding doubles
throw2 = np.zeros(24)
throw2[0:12] = throw1
for i in range(6):
throw2[(2 + 2*i):(14 + 2*i)] = throw2[(2 + 2*i):(14 + 2*i)] + (1/36)*throw1
# P array for up to 3 throws and P of throwing doubles 3 times in a row (landing on 1:36)
throw3 = np.zeros(36)
throw3[0:12] = throw1
for j in range(6):
throw3[(2 + 2*i):(26 + 2*i)] = throw3[(2 + 2*i):(26 + 2*i)] + (1/36)*throw2
doubles = (1/6)**3
# P matrix
P = np.zeros((40,40))
for k in range (40):
if k <= 3: # when no split is needed to store throw3 in P
P[k,(1 + k):(37 + k)] = throw3
else: # when throw3 must be split to be stored in P
P[k,0:(k - 3)] = throw3[(39 - k):36]
P[k,(1 + k):40] = throw3[0:(39 - k)]
# P redistribution from triple doubles
P[:,10] = P[:,10] + doubles
# P redistribution from "chance" cards
P_temp = (1/16)*(P[:,7] + P[:,22] + P[:,36])
P[:,0] = P[:,0] + P_temp # go
P[:,5] = P[:,5] + P_temp # reading railroad
P[:,10] = P[:,10] + P_temp # jail
P[:,11] = P[:,11] + P_temp # st. charles place
P[:,24] = P[:,24] + P_temp # illinois avenue
P[:,39] = P[:,39] + P_temp # boardwalk
P[:,4] = P[:,4] + (1/16)*P[:,7] # 3 tiles backwards
P[:,19] = P[:,19] + (1/16)*P[:,22]
P[:,33] = P[:,33] + (1/16)*P[:,36]
P[:,12] = P[:,12] + (1/16)*P[:,7] # nearest utility
P[:,28] = P[:,28] + (1/16)*P[:,22]
P[:,12] = P[:,12] + (1/16)*P[:,36]
P[:,15] = P[:,15] + (1/16)*P[:,7] # nearest railroad
P[:,25] = P[:,25] + (1/16)*P[:,22]
P[:,5] = P[:,5] + (1/16)*P[:,36]
P[:,7] = (7/16)*P[:,7] # compensate P
P[:,22] = (7/16)*P[:,22]
P[:,36] = (7/16)*P[:,36]
# P redistribution from "community chest" cards
P_temp = (1/17)*(P[:,2] + P[:,17] + P[:,33])
P[:,0] = P[:,0] + P_temp # go
P[:,2] = (16/17)*P[:,2] # compensate P
P[:,17] = (16/17)*P[:,17]
P[:,33] = (16/17)*P[:,33]
# P redistribution from landing in "go to jail" tile
P[:,10] = P[:,10] + P[:,30]
P[:,30] = 0
# matrix power and identity
probM = np.linalg.matrix_power(P,100)
probI = np.dot(np.identity(40) , probM)
# 1-d array
probV = np.zeros(40)
for m in range(40):
probV[m] = probI[m,m]
# display
np.set_printoptions(threshold=np.inf, precision=2, suppress=True, linewidth=np.inf) # prints whole array, 2 decimal places, no scientific notation, no line wrapping
print("Probability percentage of landing on any given Monopoly tile.\nBegins with \"Go\" tile.")
print("\nTiles 1:20")
print(100*probV[0:20])
print("\nTiles 21:40")
print(100*probV[20:40])
# note: could be made more efficient by using eigvec*eigval^100*eigvec^-1
# further work: analyze profitability taking into account price and rent too