-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_plane_h5.py
161 lines (133 loc) · 5.51 KB
/
single_plane_h5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import sys
import time
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import weave
import wandb
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import numpy as np
import json
if len(sys.argv) != 5:
print("Usage: python script.py <config_path> <signal_dir> <background_dir> <data_dir>")
sys.exit(1)
cfg_path, sig_dir, bkg_dir, data_dir = sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4]
sys.path.append('./src')
from src import fns as fns
from src import cls as cls
with open(cfg_path, "r") as f:
cfg = json.load(f)
plane = cfg['dataset']['current_plane']
train_frac = cfg['dataset']['train_fraction']
val_frac = cfg['dataset']['val_fraction']
seed = cfg['dataset']['generator_seed']
batch_size = cfg['dataloader']['batch_size']
workers = cfg['dataloader']['num_workers']
shuffle = cfg['dataloader']['shuffle']
opt = cfg['training']['optimizer']
sched = cfg['training']['scheduler']
crit = cfg['training']['criterion']
lr = cfg['training']['learning_rate']
mom = cfg['training']['momentum']
wd = cfg['training']['weight_decay']
gamma = cfg['training']['gamma']
step_size = cfg['training']['step_size']
end_fact = cfg['training']['end_factor']
epochs = cfg['training']['num_epochs']
pat = cfg['training']['patience']
sig_files = [os.path.join(sig_dir, f) for f in os.listdir(sig_dir) if f.endswith('.h5')]
bkg_files = [os.path.join(bkg_dir, f) for f in os.listdir(bkg_dir) if f.endswith('.h5')]
print("Signal HDF5 Files:")
for f in sig_files:
print(f)
dt = time.strftime('%d-%m_%H-%M')
run_name = f'{dt}_resnet18_h5_plane{plane}'
print(f'WB run name: {run_name} ')
run = wandb.init(
project="pdecay-masters-single",
name=run_name,
config={
"learning_rate": lr,
"architecture": cfg["model"]["architecture"],
"epochs": epochs,
"optimizer": opt,
"scheduler": sched,
"additional_info": cfg["model"]["remarks"],
"patience": pat,
"batch_size": batch_size,
"momentum": mom,
"weight_decay": wd,
"gamma": gamma,
"step_size": step_size,
"end_factor": end_fact,
"PLANE": plane
}
)
weave.init("pdecay-masters-single")
tbl = wandb.Table(columns=["ground truth", "prediction"])
val_tbl = wandb.Table(columns=["ground truth", "prediction"])
train_df = pd.DataFrame(columns=['ground_truth', 'output'])
val_df = pd.DataFrame(columns=['ground_truth', 'output'])
model = cls.ModifiedResNet()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs.")
model = nn.DataParallel(model)
model.to(device)
for name, param in model.named_parameters():
print(f"{name} is on {param.device}")
opt_map = {
'Adam': (optim.Adam, {'lr': lr, 'weight_decay': wd}),
'SGD': (optim.SGD, {'lr': lr, 'momentum': mom, 'weight_decay': wd}),
'Adadelta': (optim.Adadelta, {'lr': lr, 'weight_decay': wd, 'rho': 0.9}),
'RAdam': (optim.RAdam, {'lr': lr, 'weight_decay': wd})
}
sched_map = {
'StepLR': (lr_scheduler.StepLR, {'step_size': step_size, 'gamma': gamma, 'verbose': True}),
'LinearLR': (lr_scheduler.LinearLR, {'end_factor': end_fact, 'total_iters': epochs, 'verbose': True}),
'ExponentialLR': (lr_scheduler.ExponentialLR, {'gamma': gamma, 'verbose': True}),
'ReduceLROnPlateau': (lr_scheduler.ReduceLROnPlateau, {'mode': 'min', 'factor': 0.1}),
'CosineAnnealingLR': (lr_scheduler.CosineAnnealingLR, {'T_max': epochs, 'verbose': True, 'eta_min': 1e-8})
}
crit_map = {
'BCEWithLogitsLoss': nn.BCEWithLogitsLoss
}
opt_class, opt_params = opt_map[opt]
optimizer = opt_class(model.parameters(), **opt_params)
sched_class, sched_params = sched_map[sched]
scheduler = sched_class(optimizer, **sched_params)
criterion = crit_map[crit]()
print('================')
print('Creating dataset.')
print('================')
print(f'Plane {plane}')
dataset = cls.HDF5SparseDataset(signal_files=sig_files, background_files=bkg_files, plane_idx=plane)
train, val, test = fns.split_dset(dataset=dataset, train_frac=train_frac, val_frac=val_frac, generator_seed=seed)
train_loader = cls.create_dataloader(dataset=train, target_batch_size=batch_size, shuffle=shuffle, nworkers=workers)
val_loader = cls.create_dataloader(dataset=val, target_batch_size=batch_size, shuffle=shuffle, nworkers=workers)
test_loader = cls.create_dataloader(dataset=test, target_batch_size=batch_size, shuffle=shuffle, nworkers=workers)
loaders = {'train': train_loader, 'val': val_loader, 'test': test_loader}
start_time = time.time()
print('====================================')
print(f'Training model. Started at {time.strftime("%H:%M:%S", time.localtime(start_time))}')
print('====================================')
results = fns.train_model(
model=model,
train_loader=loaders['train'],
val_loader=loaders['val'],
optimizer=optimizer, scheduler=scheduler,
criterion=criterion, num_epochs=epochs,
device=device,
patience=pat, table=tbl, val_table=val_tbl, df_train=train_df, df_val=val_df,
plane=plane)
print(f'Training complete. Took {(time.time() - start_time) / 60} minutes.')
run.log({f"train_table_h5_plane{plane}": tbl})
run.log({f"val_table_h5_plane{plane}": val_tbl})
np.save(f'./diagnostics/resnet18-h5-plane{plane}-train-loss.npy', results[1])
np.save(f'./diagnostics/resnet18-h5-plane{plane}-train-acc.npy', results[3])
np.save(f'./diagnostics/resnet18-h5-plane{plane}-val-loss.npy', results[2])
np.save(f'./diagnostics/resnet18-h5-plane{plane}-val-acc.npy', results[4])
run.finish()