-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlate.py
201 lines (157 loc) · 7.47 KB
/
late.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import sys
import torch
import torch.nn as nn
import wandb
import weave
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import json
import numpy as np
import pandas as pd
from src import fns as fns
from src import cls as cls
sys.path.append('./src/fns.py')
sys.path.append('./src/net_cfg.json')
sys.path.append('./src/cls.py')
_path_cache = {}
# ==================================#
# ======== LOAD CONFIG FILE ========#
# ==================================#
with open("./src/net_cfg.json", "r") as cfg:
config = json.load(cfg)
generator_seed = config['dataset']['generator_seed']
train_frac = config['dataset']['train_fraction']
val_frac = config['dataset']['val_fraction']
# dataloader configuration ----------
batch_size = config['dataloader']['batch_size']
num_workers = config['dataloader']['num_workers']
shuffle = config['dataloader']['shuffle']
# training configuration ------------
optimizer = config['training']['optimizer']
scheduler = config['training']['scheduler']
lr = config['training']['learning_rate']
momentum = config['training']['momentum']
weight_decay = config['training']['weight_decay']
gamma = config['training']['gamma']
num_epochs = config['training']['num_epochs']
patience = config['training']['patience']
step_size = config['training']['step_size']
# ==================================#
# ======== INITIALIZE W&B ==========#
# ==================================#
run = wandb.init(
project="mpdecay-lf",
config={
"learning_rate": lr,
"architecture": "fusion with gate",
"dataset": "",
"epochs": num_epochs,
"batch_size": batch_size,
"optimizer": optimizer,
"scheduler": scheduler,
"momentum": momentum,
"weight_decay": weight_decay,
"gamma": gamma,
"additional_info": config["model"]["remarks"]
}
)
weave_run = weave.init("mpdecay-lf")
# ==================================#
# ============ SETUP ===============#
# ==================================#
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Device is {}'.format(device))
print()
data_dir_pos = '/mnt/lustre/helios-home/gartmann/pdecay-sparse-pos/'
signal_dirs_pos = [os.path.join(data_dir_pos, f'plane{i}', 'signal') for i in range(3)]
background_dirs_pos = [os.path.join(data_dir_pos, f'plane{i}', 'background') for i in range(3)]
data_dir_neg = '/mnt/lustre/helios-home/gartmann/pdecay-sparse-neg/'
signal_dirs_neg = [os.path.join(data_dir_neg, f'plane{i}', 'signal') for i in range(3)]
background_dirs_neg = [os.path.join(data_dir_neg, f'plane{i}', 'background') for i in range(3)]
# ==================================#
# ============ DATASET =============#
# ==================================#
pdatasets = {}
ndatasets = {}
for plane in range(3):
ppaths = fns.get_sparse_matrix_paths_cached(signal_dirs_pos[plane], background_dirs_pos[plane])
npaths = fns.get_sparse_matrix_paths_cached(signal_dirs_neg[plane], background_dirs_neg[plane])
psubset = cls.SparseMatrixDataset(ppaths)
nsubset = cls.SparseMatrixDataset(npaths)
pdatasets[plane] = psubset
ndatasets[plane] = nsubset
psplits = {}
nsplits = {}
for plane in range(3):
ptrain, pval, ptest = fns.split_dset(dataset=pdatasets[plane], train_frac=train_frac, val_frac=val_frac,
generator_seed=generator_seed)
psplits[plane] = {'ptrain': ptrain, 'pval': pval, 'ptest': ptest}
ntrain, nval, ntest = fns.split_dset(dataset=ndatasets[plane], train_frac=train_frac, val_frac=val_frac,
generator_seed=generator_seed)
nsplits[plane] = {'ntrain': ntrain, 'nval': nval, 'ntest': ntest}
dataloaders = {}
for plane in range(3):
ptrain_loader = DataLoader(psplits[plane]['ptrain'], batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
pval_loader = DataLoader(psplits[plane]['pval'], batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
ptest_loader = DataLoader(psplits[plane]['ptest'], batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
ntrain_loader = DataLoader(nsplits[plane]['ntrain'], batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
nval_loader = DataLoader(nsplits[plane]['nval'], batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
ntest_loader = DataLoader(nsplits[plane]['ntest'], batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
dataloaders[plane] = {
'ptrain': ptrain_loader, 'pval': pval_loader, 'ptest': ptest_loader,
'ntrain': ntrain_loader, 'nval': nval_loader, 'ntest': ntest_loader
}
# ==================================#
# ============ MODEL ===============#
# ==================================
checkpoint_dir = "./checkpoints"
trained_model_paths = [os.path.join(checkpoint_dir, 'resnet18-pos', "resnet18_03-05_16-06_pos_0.pt"),
os.path.join(checkpoint_dir, 'resnet18-pos', "resnet18_03-05_19-48_pos_1.pt"),
os.path.join(checkpoint_dir, 'resnet18-pos', "resnet18_04-05_22-46_pos_2.pt"),
os.path.join(checkpoint_dir, 'resnet18-neg', "resnet18_05-05_21-21_neg_0.pt"),
os.path.join(checkpoint_dir, 'resnet18-neg', "resnet18_05-05_22-57_neg_1.pt"),
os.path.join(checkpoint_dir, 'resnet18-neg', "resnet18_05-05_01-22_neg_2.pt")
]
models = [cls.ModifiedResNet() for _ in range(6)]
for model in models:
fns.load_checkpoint(model, trained_model_paths[models.index(model)])
fused_model = cls.LateFusedModel(models=models)
if torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs.")
fused_model = nn.DataParallel(fused_model)
fused_model = fused_model.to(device)
# ==================================#
if optimizer == 'Adam':
opt = torch.optim.Adam(fused_model.parameters(), lr=lr, weight_decay=weight_decay)
elif optimizer == 'SGD':
opt = torch.optim.SGD(fused_model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
else:
print('Optimizer not recognized.')
raise NotImplementedError
if scheduler == 'ExponentialLR':
sched = lr_scheduler.ExponentialLR(opt, gamma=gamma, last_epoch=-1)
elif scheduler == 'StepLR':
sched = lr_scheduler.StepLR(opt, step_size=step_size, gamma=gamma, last_epoch=-1)
elif scheduler == 'CosineAnnealingLR':
sched = lr_scheduler.CosineAnnealingLR(opt, T_max=num_epochs - 1, eta_min=1e-8)
else:
print('Scheduler not recognized.')
raise NotImplementedError
criterion = nn.BCEWithLogitsLoss()
# ==================================#
# ============ TRAIN ===============#
# ==================================#
log_df_val_local_save = pd.DataFrame(columns=['ground_truth', 'ensemble_output'])
log_df_train_local_save = pd.DataFrame(columns=['ground_truth', 'ensemble_output'])
log_df_test_local_save = pd.DataFrame(columns=['ground_truth', 'ensemble_output'])
trained_lfm, train_loss_values, val_loss_values, train_acc_values, val_acc_values, best_epoch = fns.train_lfm(
model=fused_model,
dataloaders=dataloaders, optimizer=opt, criterion=criterion, scheduler=sched, device=device,
num_epochs=num_epochs, patience=patience, df_train=log_df_train_local_save, df_val=log_df_val_local_save,
df_test=log_df_test_local_save)
np.save('./diagnostics/lfm6-train-loss.npy', train_loss_values)
np.save('./diagnostics/lfm6-train-acc.npy', train_acc_values)
np.save('./diagnostics/lfm6-val-loss.npy', val_loss_values)
np.save('./diagnostics/lfm6-val-acc.npy', val_acc_values)
run.finish()