-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_ghosts.py
201 lines (165 loc) · 8.07 KB
/
find_ghosts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#!~/venv/bin/python
import os
import time
from multiprocessing import Pool, Manager
import cv2 as cv
import numpy as np
import scipy.sparse as sp
from scipy.ndimage import convolve
from skimage.measure import label, regionprops
from skimage.morphology import dilation, rectangle
from skimage.segmentation import flood_fill
import wandb
def aggressive_dilation(binary_mask, iterations=4, structuring_element_size=(4, 2)):
structuring_element = rectangle(*structuring_element_size)
for _ in range(iterations):
binary_mask = dilation(binary_mask, structuring_element)
return binary_mask
def sparse_convolution(image, kernel_size=7):
kernel = np.ones((kernel_size, kernel_size), dtype=float) / (kernel_size ** 2)
convolved_image = convolve(image.astype(float), kernel, mode='nearest')
downsampled_image = convolved_image[::kernel_size, ::kernel_size]
return downsampled_image
def image_batch_generator(path_list, batch_size=256):
for i in range(0, len(path_list), batch_size):
batch_paths = path_list[i:i + batch_size]
batch_images = {}
for path in batch_paths:
if path.endswith('.npz'):
key = os.path.splitext(os.path.basename(path))[0]
image = sp.load_npz(path).toarray()
image = np.uint8(image)
image = cv.cvtColor(image, cv.COLOR_GRAY2RGB)
batch_images[key] = image
yield i // batch_size, batch_images
def split_path(path):
filename = os.path.basename(path)
if 'larcv' in filename:
type = filename.split('_')[1]
batch = filename.split('_')[2]
plane = int(filename.split('_')[4][5:])
file_num = int(filename.split('_')[5].split('.')[0])
return type, batch, plane, file_num
else:
type = filename.split('_')[0]
plane = int(filename.split('_')[1][5:])
file_num = int(filename.split('_')[2].split('.')[0])
return type, 0, plane, file_num
def draw_bboxes_on_image(image, regions):
for region in regions:
minr, minc, maxr, maxc = region.bbox
cv.rectangle(image, (minc, minr), (maxc, maxr), (0, 255, 0), 2)
return image
def process_batch(batch_number, image_dict, min_reg_area, max_hdist, tol, aeps, wandb_table):
two_line_keys = []
empty_keys = []
found_in_batch = 0
for key, img in image_dict.items():
img = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
conv_img = sparse_convolution(img, kernel_size=5)
conv_img = np.uint8(conv_img)
_, binary_mask = cv.threshold(conv_img, 0, 255, cv.THRESH_BINARY)
binary_mask = aggressive_dilation(binary_mask)
nonzero_pixels = np.transpose(np.nonzero(binary_mask))
if len(nonzero_pixels) > 0:
rand_pix_idx = np.random.choice(len(nonzero_pixels))
x_seed, y_seed = nonzero_pixels[rand_pix_idx]
labeled_mask = flood_fill(binary_mask, (x_seed, y_seed), 255, tolerance=tol)
else:
empty_keys.append(key)
continue
labeled_img = label(labeled_mask)
regions = regionprops(labeled_img)
large_regions = [region for region in regions if region.area >= min_reg_area]
found_two_lines = False
dists = []
for i, region1 in enumerate(large_regions):
if found_two_lines:
break
for region2 in large_regions[i + 1:]:
cent1 = np.array(region1.centroid)
cent2 = np.array(region2.centroid)
hdist = abs(cent1[1] - cent2[1])
adif = abs(region2.area - region1.area)
dists.append(hdist)
if hdist > max_hdist and adif <= aeps:
found_two_lines = True
two_line_keys.append(key)
found_in_batch += 1
break
if len(dists) > 0:
wandb_table.add_data(key, wandb.Image(img), max(dists), found_two_lines)
else:
wandb_table.add_data(key, wandb.Image(img), -7, found_two_lines)
return two_line_keys, empty_keys, found_in_batch
def constrained_flood(image_gen, min_reg_area, max_hdist, tol=10, aeps=150):
with Manager() as manager:
wandb_table = manager.list(wandb.Table(columns=['key', 'image', 'max dist', 'found ghosts (bool)']))
pool = Pool(processes=os.cpu_count())
results = []
for batch_number, image_dict in image_gen:
result = pool.apply_async(process_batch,
(batch_number, image_dict, min_reg_area, max_hdist, tol, aeps, wandb_table))
results.append(result)
pool.close()
pool.join()
two_line_keys = []
empty_keys = []
for result in results:
two_line_keys_batch, empty_keys_batch, found_in_batch = result.get()
two_line_keys.extend(two_line_keys_batch)
empty_keys.extend(empty_keys_batch)
print(f'In batch {batch_number}, found {found_in_batch} images with two lines meeting criteria')
print('=' * 30)
print(f'Empty image count: {len(empty_keys)}')
return two_line_keys
if __name__ == '__main__':
run = wandb.init(project="mpdecay-cff")
wandb_table = wandb.Table(columns=['key', 'image', 'max dist', 'found ghosts (bool)'])
data_dir = '/mnt/lustre/helios-home/gartmann/pdecay-sparse-pos/'
plane0 = os.path.join(data_dir, f'plane0', 'signal')
plane1 = os.path.join(data_dir, f'plane1', 'signal')
evt_files0 = [os.path.join(plane0, file) for file in os.listdir(plane0) if '.npz' in file]
evt_files1 = [os.path.join(plane1, file) for file in os.listdir(plane1) if '.npz' in file]
print('applying cff to plane0 {}'.format(time.strftime('%d-%m_%H-%M')))
two_lines0 = constrained_flood(image_batch_generator(evt_files0), min_reg_area=400, max_hdist=12, tol=10)
print(
f'Found {len(two_lines0)}/{len(evt_files0)} or {len(two_lines0) / len(evt_files0) * 100:.2f}% two lines in plane0')
print('applying cff to plane1 {}'.format(time.strftime('%d-%m_%H-%M')))
two_lines1 = constrained_flood(image_batch_generator(evt_files1), min_reg_area=400, max_hdist=12, tol=10)
print(
f'Found {len(two_lines1)}/{len(evt_files1)} or {len(two_lines1) / len(evt_files1) * 100:.2f}% two lines in plane1')
print('done {}'.format(time.strftime('%d-%m_%H-%M')))
print(
f'Totally found {len(two_lines0) + len(two_lines1)}/{len(evt_files0) + len(evt_files1)} or {(len(two_lines0) + len(two_lines1)) / (len(evt_files0) + len(evt_files1)) * 100:.2f}% two lines')
run.log({'ghosts_tab_{}'.format(time.strftime('%d-%m_%H-%M')): wandb_table})
run.finish()
# bin_path = '/mnt/lustre/helios-home/gartmann/cff-bin'
# for path in two_lines0:
# type, batch, plane, file_number = split_path(path)
# path1 = os.path.join(data_dir, f'plane1', f'files_{type}_{batch}_larcv_plane1_{file_number}.npz')
# path2 = os.path.join(data_dir, f'plane2', f'files_{type}_{batch}_larcv_plane2_{file_number}.npz')
# if os.path.exists(path1) and os.path.exists(path2):
# shutil.move(path, os.path.join(bin_path, 'plane0', 'signal'))
# shutil.move(path1, os.path.join(bin_path, 'plane1', 'signal'))
# shutil.move(path2, os.path.join(bin_path, 'plane2', 'signal'))
# os.remove(path) #double-track-bkg-bin
# os.remove(path1)
# os.remove(path2)
#
# else:
# os.remove(path)
# for path in two_lines1:
# type, batch, plane, file_number = split_path(path)
# path0 = os.path.join(data_dir, f'plane0', f'files_{type}_{batch}_larcv_plane0_{file_number}.npz')
# path2 = os.path.join(data_dir, f'plane2', f'files_{type}_{batch}_larcv_plane2_{file_number}.npz')
# if os.path.exists(path0) and os.path.exists(path2):
# shutil.move(path, os.path.join(bin_path, 'plane1', 'signal'))
# shutil.move(path0, os.path.join(bin_path, 'plane0', 'signal'))
# shutil.move(path2, os.path.join(bin_path, 'plane2', 'signal'))
# os.remove(path)
# os.remove(path0)
# os.remove(path2)
#
# else:
# os.remove(path)