-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
192 lines (166 loc) · 7.63 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import sys
import time
import logging
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from model import LinearModel, RNNModel
from data_loader import dataloader
from tensorboardX import SummaryWriter
np.random.seed(7)
torch.manual_seed(7)
parser = argparse.ArgumentParser()
FORMAT = '[%(levelname)s: %(filename)s: %(lineno)4d]: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT, stream=sys.stdout)
logger = logging.getLogger(__name__)
# Dataset options
parser.add_argument('--train_dir', default='../train/random_split', type=str)
parser.add_argument('--test_dir', default='../test', type=str)
parser.add_argument('--use_all', default=True, type=bool)
# Feature options
parser.add_argument('--win_hand_t', default=False, type=bool)
parser.add_argument('--win_hand_f', default=False, type=bool)
parser.add_argument('--t_feature_dim', default=300, type=int)
parser.add_argument('--f_feature_dim', default=150, type=int)
parser.add_argument('--sample_rate', default=10, type=int)
# Model options
parser.add_argument('--model_type', default='rnn', choices=['linear', 'rnn'], type=str)
parser.add_argument('--seq_len', default=150000, type=int)
parser.add_argument('--win_len', default=3000, type=int)
parser.add_argument('--emb_dim', default=64, type=int)
parser.add_argument('--hidden_dim', default=256, type=int)
# Training options
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--num_epochs', default=200, type=int)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--clip_grad_norm', default=5., type=float)
parser.add_argument('--dropout', default=0., type=float)
parser.add_argument('--l2_regu', default=0., type=float)
# Output options
parser.add_argument('--log_dir', default='logs')
parser.add_argument('--save_dir', default='save')
parser.add_argument('--checkpoint_name', default='rnn_model_tf')
parser.add_argument('--print_every', default=20, type=int)
parser.add_argument('--checkpoint_every_epoch', default=5, type=int)
def mae_losses(outputs, labels, mode='mean'):
losses = (outputs - labels).abs()
if mode == 'mean':
losses = losses.mean()
elif mode == 'sum':
losses = losses.sum()
return losses
def eval_model(loader, model, num_samples_check=np.inf):
total_num, mae_loss_list = 0, []
model.eval()
with torch.no_grad():
for batch in loader:
t_feature, f_feature, y = batch
pred_y = model(t_feature, f_feature)
loss = mae_losses(pred_y, y, mode='sum')
mae_loss_list.append(loss.item())
total_num += y.size(0)
if total_num > num_samples_check:
break
mae = sum(mae_loss_list) / total_num
model.train()
return mae
if __name__ == '__main__':
args = parser.parse_args()
logger.info('Loading data...')
train_dset, train_loader = dataloader(args.train_dir, 'train',
use_all=args.use_all,
batch_size=args.batch_size, shuffle=True,
seq_len=args.seq_len, win_len=args.win_len, sample_rate=args.sample_rate,
use_t=(args.t_feature_dim > 0), use_f=(args.f_feature_dim > 0),
win_hand_t=args.win_hand_t, win_hand_f=args.win_hand_f
)
val_dset, val_loader = dataloader(args.train_dir, 'val',
use_all=False,
batch_size=args.batch_size, shuffle=False,
seq_len=args.seq_len, win_len=args.win_len, sample_rate=args.sample_rate,
use_t=(args.t_feature_dim > 0), use_f=(args.f_feature_dim > 0),
win_hand_t=args.win_hand_t, win_hand_f=args.win_hand_f
)
logging.info('There are {}, {} samples in train, val dataset'.format(len(train_dset), len(val_dset)))
model_list = {'linear': LinearModel, 'rnn': RNNModel}
model = model_list[args.model_type]
model = model(win_num=int(args.seq_len / args.win_len),
t_feature_dim=args.t_feature_dim, f_feature_dim=args.f_feature_dim,
emb_dim=args.emb_dim, hidden_dim=args.hidden_dim, dropout=args.dropout)
logger.info('This is the model: ')
logger.info(model)
optimizer = optim.Adam(model.parameters(), args.lr, weight_decay=args.l2_regu)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
logging.warning('Create log dir!')
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
logging.warning('Create save dir!')
checkpoint = {
'args': args.__dict__,
'losses': [],
'losses_ts': [],
'metrics_train': [],
'metrics_val': [],
'counters': {
't': None,
'epoch': None
},
'state': None,
'optim_state': None,
'best_state': None,
'best_t': None,
}
writer = SummaryWriter(logdir='{}/{}'.format(args.log_dir, args.checkpoint_name))
total_t = 0
for epoch in range(args.num_epochs):
t = 0
t0 = time.time()
for batch in train_loader:
t_feature, f_feature, y = batch
pred_y = model(t_feature, f_feature)
loss = mae_losses(pred_y, y)
optimizer.zero_grad()
loss.backward()
if args.clip_grad_norm > 0:
nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad_norm)
optimizer.step()
if (t + 1) % args.print_every == 0:
logger.info('Epoch: {} batch: {} loss: {:.4f}'.format(epoch + 1, t + 1, loss.item()))
checkpoint['losses'].append(loss.item())
checkpoint['losses_ts'].append(total_t + 1)
writer.add_scalar('train/loss', loss.item(), total_t + 1)
# if total_t == 0:
# writer.add_graph(model, past_rel_coor)
t += 1
total_t += 1
# check eval metrics
if (epoch + 1) % args.checkpoint_every_epoch == 0 or epoch == 0:
logger.info('Epoch {} finished! Took {:4f}s'.format(epoch + 1, time.time() - t0))
# evaluate on the training set and the validation set
logger.info('Evaluate on the training set...')
train_mae = eval_model(train_loader, model, 500)
logger.info(' [train] mae: {:.4f}'.format(train_mae))
logger.info('Evaluate on the validation set...')
val_mae = eval_model(val_loader, model)
logger.info(' [val] mae: {:.4f}'.format(val_mae))
checkpoint['metrics_train'].append(train_mae)
checkpoint['metrics_val'].append(val_mae)
writer.add_scalar('train/mae', train_mae, epoch + 1)
writer.add_scalar('val/mae', val_mae, epoch + 1)
min_mae = min(checkpoint['metrics_val'])
if val_mae == min_mae:
logger.info('Best mean absolute error!')
checkpoint['best_t'] = epoch + 1
checkpoint['best_state'] = model.state_dict()
# save checkpoint
checkpoint['state'] = model.state_dict()
checkpoint['optim_state'] = optimizer.state_dict()
checkpoint_path = os.path.join(args.save_dir, '%s-%d.pt' % (args.checkpoint_name, epoch + 1))
logger.info('Saving checkpoint to {}'.format(checkpoint_path))
torch.save(checkpoint, checkpoint_path)
logger.info('Done.')
writer.close()