-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathpca.py
67 lines (54 loc) · 1.84 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import numpy as np
import warnings
warnings.filterwarnings("ignore")
class PCA:
def __init__(self, n_component):
self.n_component = n_component
def fit_transform(self, X: np.ndarray):
'''
:param X: N x d
:return: N x n_component
'''
N, d = X.shape
self.mean = np.mean(X, axis=0, keepdims=True)
X = X - self.mean
cov = 1 / N * X.T @ X
eig_value, eig_vector = np.linalg.eig(cov)
index = np.argsort(eig_value)[::-1] # descending order
self.eig_value = eig_value[index]
self.eig_vector = eig_vector[..., index]
self.P = eig_vector[..., :self.n_component]
Y = X @ self.P
return Y.astype(np.float)
def transform(self, X):
return (X @ self.P).astype(np.float)
def fit_transform_components(self, X, components):
N, d = X.shape
mean = np.mean(X, axis=0, keepdims=True)
X = X - mean
cov = 1 / N * X.T @ X
eig_value, eig_vector = np.linalg.eig(cov)
index = np.argsort(eig_value)[::-1] # descending order
eig_value = eig_value[index]
eig_vector = eig_vector[..., index]
for n_component in components:
P = eig_vector[..., :n_component]
Y = X @ P
X_rec = Y @ P.T + mean
yield Y, X_rec
def reconstruct(self, Y):
'''
:param Y: N x n_component
:return: N x d
'''
X = Y @ self.P.T + self.mean
return X
if __name__ == '__main__':
specified_labels = [2, 3, 5]
from utils import common
mnist_root = '../data/raw_mnist'
data, label, _, _ = common.load_raw_mnist(mnist_root)
data, label = common.data_filter(data, label, specified_labels)
pca = PCA(2)
pca_data = pca.fit_transform(data)
common.scatter(pca_data, label, 'PCA Visualization.')