-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.py
192 lines (189 loc) · 4.75 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import argparse
def parser():
# Parse arguments and prepare program
parser = argparse.ArgumentParser(description="Training Custom NN")
parser.add_argument(
"--resume",
default="",
type=str,
metavar="PATH",
help="path to .pth file checkpoint",
)
parser.add_argument(
"-t",
"--train",
dest="train",
action="store_true",
help="use this flag to train the model",
)
parser.add_argument(
"-d",
"--dropout",
dest="dropout",
action="store_true",
help="use this flag to use dropout in the model",
)
parser.add_argument(
"-b",
"--batchnorm",
dest="batchnorm",
action="store_true",
help="use this flag to use batchnorm in the model",
)
parser.add_argument(
"-w",
"--wandb",
dest="save_wandb",
action="store_true",
help="use this flag to save the model on wandb",
)
parser.add_argument(
"-s",
"--scheduler",
dest="scheduler",
action="store_true",
help="use this flag to use scheduler during training",
)
parser.add_argument(
"--norm",
dest="normalize",
action="store_true",
help="use this flag to normalize the dataset in [-1,1]",
)
parser.add_argument(
"--stand",
dest="standardize",
action="store_true",
help="use this flag to standardize the dataset (mu=0, std=1)",
)
parser.add_argument(
"--scale",
dest="scale",
action="store_true",
help="use this flag to scale the dataset in [0,1]",
)
parser.add_argument(
"--batch_size",
default=100,
type=int,
metavar="N",
help="training batch size (default: 100)",
)
parser.add_argument(
"--val_batch_size",
default=2000,
type=int,
metavar="N",
help="validation batch size [Set 0 for testing] (default: 2000)",
)
parser.add_argument(
"--epochs",
default=2,
type=int,
metavar="N",
help="number of epochs (default: 2)",
)
parser.add_argument(
"--learning_rate",
default=1e-3,
type=float,
metavar="N",
help="learning rate (default 1e-3)",
)
parser.add_argument(
"--weight_decay",
default=0.0,
type=float,
metavar="N",
help="learning rate (default 0.)",
)
parser.add_argument(
"--activation",
default="rrelu",
type=str,
metavar="string",
help="specify activation function (default rrelu)",
)
parser.add_argument(
"--data_dir",
nargs="+",
type=str,
help=" list of datasets directory (used for both train and validation)",
)
parser.add_argument(
"--weights_path",
default=None,
type=str,
metavar="PATH",
help="dataset directory used to load model's parameters (default: None)",
)
parser.add_argument(
"--train_size",
default=0.9,
type=float,
help="Size (in percent) of the training set (default: 0.9)",
)
parser.add_argument(
"--input_name",
default="speckleF",
type=str,
metavar="string",
help="specify input name (default speckleF)",
)
parser.add_argument(
"--output_name",
default="evalues",
type=str,
metavar="string",
help="specify target name in dataset (default evalues)",
)
parser.add_argument(
"--input_size",
nargs="+",
type=int,
help="list of input sizes (if smaller than its natural size)",
required=True,
)
parser.add_argument(
"--nofreeze_layer",
nargs="+",
type=str,
help="list of layer to not freeze",
default=None,
)
parser.add_argument(
"--hidden_dim",
default=128,
type=int,
metavar="N",
help="channels in the hidden layers (default 128)",
)
parser.add_argument(
"--layers",
default=4,
type=int,
metavar="N",
help="number of the hidden layers (default 4)",
)
parser.add_argument(
"--kernel_size",
default=None,
type=int,
metavar="N",
help="size of the kernel (default None)",
)
parser.add_argument(
"--workers",
default=8,
type=int,
metavar="N",
help="number of CPU to use in training (default 8)",
)
parser.add_argument(
"--model_type",
default="MLP",
type=str,
metavar="string",
help="type of the model to train/eval (default MLP)",
)
return parser