-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
339 lines (284 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"Main for DLAI project."
import os
from parser import parser
import random
from datetime import datetime
import numpy as np
import torch
from ignite.contrib.metrics.regression import R2Score
from torchvision import transforms
import wandb
# from tqdm import tqdm, trange
from score import make_averager
from utils import (
load_data,
config_wandb,
get_model,
get_mean_std,
get_min_max,
Scale,
Normalize,
test_all,
)
from init_parameters import freeze_param, init_weights
# Fixed parameters
OUTPUT_NAME = "evalues"
TEST_BATCH_SIZE = 500
SEED = 0
def main():
"""Train, test and evaluate the model.
"""
# Load parser
pars = parser()
args = pars.parse_args()
print("\n\nArguments:\n{0}\n".format(args))
# to be pass to the model
init = args.weights_path is not None and args.weights_path != "zeros"
print("\nNon-parametric args:\ntest_batch_size: {0}".format(TEST_BATCH_SIZE))
if args.train:
# Initialize directories
save_path = "checkpoints/{0}/L_{1}/{13}-batch{2}-{5}-init{6}-stand{11}-norm{10}-scale{14}-ts{12}".format(
args.model_type,
args.input_size[0] - 1 if len(args.input_size) == 1 else args.input_size,
args.batch_size,
args.layers,
args.hidden_dim,
args.activation,
init,
args.nofreeze_layer,
args.weight_decay,
args.kernel_size,
args.normalize,
args.standardize,
args.train_size,
datetime.now().strftime("%Y%m%d_%H%M%S"),
args.scale,
)
os.makedirs(
save_path, exist_ok=True,
)
print("\nSaving checkpoints in {0}".format(save_path))
# reproducibility
torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)
# limit number of CPUs
torch.set_num_threads(args.workers)
# And set inter-parallel processes
# torch.set_num_interop_threads(1)
# check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# import model and move it to GPU (if available)
model = get_model(args, init=init).to(device)
print(
"\nNumber of model parameters: {0}\n".format(
sum(p.numel() for p in model.parameters() if p.requires_grad)
)
)
# Change type of weights since data are double
if args.model_type != "GoogLeNet":
model = model.double()
# initialize weights as zeros
if args.weights_path == "zeros":
model.apply(init_weights)
# freeze all weights except the num_layer layer
if args.nofreeze_layer is not None:
model = freeze_param(model, num_layer=args.nofreeze_layer)
# define transform to apply to each dataset
transform = []
min_val, max_val = 0, 0
for idx, _ in enumerate(args.input_size):
transform_list = [
torch.tensor,
]
if args.scale:
# min_val, max_val = get_min_max(
# args, idx
# ) # compute min and max in each dataset
min_val, max_val = -3.403331349367293, 3.2769019702924895
transform_list.append(Scale(min_val, max_val))
if args.normalize:
transform_list.append(Normalize(0.5, 0.5))
if args.standardize:
# mean, std = get_mean_std(args, idx) # compute mean and std in each dataset
mean, std = 0.00017965349968347114, 0.43636118322494044
transform_list.append(
Normalize(mean, std, args.scale, min_val=min_val, max_val=max_val)
)
transform.append(transforms.Compose(transform_list))
# save current training on wandb
if args.save_wandb:
config_wandb(args, model)
# import loss and optimizer
criterion = torch.nn.MSELoss()
opt = torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=args.learning_rate,
weight_decay=args.weight_decay,
)
# import scheduler to reduce lr dinamically
if args.scheduler:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
opt, factor=0.8, patience=20, verbose=True
)
if args.train:
# load training and validation dataset
train_loader, valid_loader = load_data(
args.data_dir,
args.input_name,
OUTPUT_NAME,
args.input_size,
args.batch_size,
args.val_batch_size,
transform=transform,
num_workers=args.workers,
model=args.model_type,
train_size=args.train_size,
)
# initialize R2 score class
best_losses = np.infty
valid_r2 = R2Score()
train_r2 = R2Score()
# initialize list of losses
train_loss = []
val_loss = []
val_r2 = []
tr_r2 = []
# initialize start epoch
start_epoch = 0
# Resume training if checkpoint path is given
if args.resume:
if os.path.isfile(args.resume):
print("Loading checkpoint {}...".format(args.resume))
checkpoint = torch.load(
args.resume, map_location=lambda storage, loc: storage
)
start_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint["model_state_dict"])
opt.load_state_dict(checkpoint["optimizer_state_dict"])
best_losses = checkpoint["best_losses"]
train_loss = checkpoint["train_loss"]
val_loss = checkpoint["validate_loss"]
tr_r2 = checkpoint["Train_R2Score"]
val_r2 = checkpoint["Val_R2Score"]
print("Finished loading checkpoint.")
print("Resuming from epoch {0}".format(start_epoch))
else:
raise FileNotFoundError("File {0} not found".format(args.resume))
# for epoch in trange(epochs, total=epochs, leave=False):
for epoch in range(start_epoch, args.epochs):
# mantain a running average of the loss
train_loss_averager = make_averager()
# tqdm_iterator = tqdm(
# train_loader,
# total=len(train_loader),
# desc=f"batch [loss: None]",
# leave=False,
# )
train_r2.reset()
model.train()
# for data, target in tqdm_iterator:
for data, target in train_loader:
data, target = data.to(device), target.to(device)
# data are double but GoggLeNet only accepts float
if args.model_type == "GoogLeNet":
data, target = data.float(), target.float()
pred = model(data)
# pred has dim (batch_size, 1), target (batch_size)
pred = pred.squeeze()
loss = criterion(pred, target)
# backpropagation
opt.zero_grad()
loss.backward()
# one optimizer step
opt.step()
# update loss and R2 values iteratively
# WARNING the computed values are means over the training
train_loss_averager(loss.item())
train_r2.update((pred, target))
# tqdm_iterator.set_description(
# f"train batch [avg loss: {train_loss_averager(None):.3f}]"
# )
# tqdm_iterator.refresh()
# set model to evaluation mode
model.eval()
# initialize loss and R2 for validation set
valid_loss_averager = make_averager()
valid_r2.reset()
with torch.no_grad():
for data, target in valid_loader:
data, target = data.to(device), target.to(device)
# data are double but GoggLeNet accepts float
if args.model_type == "GoogLeNet":
data, target = data.float(), target.float()
pred = model(data)
# pred has dim (batch_size, 1)
pred = pred.squeeze()
# update loss and R2 values iteratively
valid_loss_averager(criterion(pred, target))
valid_r2.update((pred, target))
print(
f"\n\nEpoch: {epoch}\n"
f"Train set: Average loss: {train_loss_averager(None):.5f}\n"
f"Train set: R2 score: {train_r2.compute():.4f}\n"
f"Validation set: Average loss: {valid_loss_averager(None):.5f}\n"
f"Validation set: R2 score: {valid_r2.compute():.4f}\n"
)
if args.scheduler:
# scheduler update
scheduler.step(valid_loss_averager(None))
if args.save_wandb:
# save losses on wandb
wandb.log(
{
"Train loss": train_loss_averager(None),
"Train R2 score": train_r2.compute(),
"Val loss": valid_loss_averager(None),
"Val R2 score": valid_r2.compute(),
}
)
# update loss lists
train_loss.append(train_loss_averager(None))
val_loss.append(valid_loss_averager(None))
val_r2.append(valid_r2.compute())
tr_r2.append(train_r2.compute())
checkpoint_dict = {
"model_state_dict": model.state_dict(),
"optimizer_state_dict": opt.state_dict(),
"epoch": epoch,
"best_losses": best_losses,
"train_loss": train_loss,
"validate_loss": val_loss,
"Train_R2Score": tr_r2,
"Val_R2Score": val_r2,
}
valid_loss = valid_loss_averager(None)
# Save checkpoint every epoch and when a better model is produced
if valid_loss < best_losses:
best_losses = valid_loss
torch.save(checkpoint_dict, save_path + "/best-model.tar")
# save model every 50 epochs
if epoch % 50 == 0:
torch.save(
checkpoint_dict, save_path + "/model-epoch-{0}.tar".format(epoch,),
)
# retrive best model of train session
model.load_state_dict(
torch.load(save_path + "/best-model.tar")["model_state_dict"]
)
# save model to wandb
if args.save_wandb:
torch.save(
model.state_dict(), os.path.join(wandb.run.dir, "model_final.pt")
)
# perform test on all dataset
test_all(args, model, transform, OUTPUT_NAME, TEST_BATCH_SIZE)
else:
print("Loading model {}...".format(args.resume))
checkpoint = torch.load(args.resume, map_location=lambda storage, loc: storage)
# load weights
model.load_state_dict(checkpoint["model_state_dict"])
# perform test on all dataset
test_all(args, model, transform, OUTPUT_NAME, TEST_BATCH_SIZE)
if __name__ == "__main__":
main()