-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmark.py
784 lines (690 loc) · 29.9 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
#!/usr/bin/env python
# -*- coding:utf-8 -*-
__author__ = 'homeway'
__copyright__ = 'Copyright © 2022/09/23, homeway'
import re
import os
import logging
import torch
import shutil
import numpy as np
from model import loader as mloader
from dataset import loader as dloader
from utils import helper, metric
from attack.finetuner import Finetuner
from attack.trainer import Trainer
from attack.weight_pruner import WeightPruner
import argparse
import os.path as osp
CONTINUE_TRAIN = False
class ModelWrapper:
def __init__(self, benchmark, teacher_wrapper, trans_str,
seed=1000, arch_id=None, dataset_id=None, iters=100, fc=True, **kwargs):
self.logger = logging.getLogger('ModelWrapper')
self.benchmark = benchmark
self.teacher_wrapper = teacher_wrapper
self.trans_str = trans_str
self.arch_id = arch_id if arch_id else teacher_wrapper.arch_id
self.dataset_id = dataset_id if dataset_id else teacher_wrapper.dataset_id
self.torch_model_path = os.path.join(benchmark.models_dir, f'{self.__str__()}')
self.iters = iters
self.fc = fc
self.seed = 1000 if (teacher_wrapper is None) else int(seed)
self.ckpt_path = os.path.join(self.torch_model_path, f'final_ckpt_s{seed}.pth')
self.cfg = dloader.load_cfg(self.dataset_id, self.arch_id)
for k, v in kwargs.items():
setattr(self, k, v)
if "quantize" in trans_str:
self.cfg.device = torch.device("cpu")
assert self.arch_id is not None
assert self.dataset_id is not None
def __str__(self):
teacher_str = '' if self.teacher_wrapper is None else self.teacher_wrapper.__str__()
return f'{teacher_str}{self.trans_str}-'
def __call__(self, *args, **kwargs):
return self.torch_model(*args, **kwargs)
def batch_forward(self, inputs):
if isinstance(inputs, np.ndarray):
inputs = torch.from_numpy(inputs)
m = re.match(r'(\S+)\((\S*)\)', self.trans_str)
method = m.group(1)
if method == "quantize":
inputs = inputs.to("cpu")
else:
inputs = inputs.to(self.cfg.device)
self.torch_model_on_device.eval()
with torch.no_grad():
return self.torch_model_on_device(inputs)
@helper.lazy_property
def torch_model_on_device(self):
m = re.match(r'(\S+)\((\S*)\)', self.trans_str)
method = m.group(1)
if method == "quantize":
return self.torch_model.to("cpu")
else:
print(f"-> model on device:{self.cfg.device}")
return self.torch_model.to(self.cfg.device)
def eval(self, torch_model):
topk_acc = {
"top1": 0,
"top3": 0,
"top5": 0
}
if self.dataset_id == "ImageNet":
return topk_acc
test_loader = dloader.get_dataloader(self.dataset_id, split='test')
_, topk_acc, _ = metric.topk_test(torch_model, test_loader, epoch=0, debug=True, device=self.cfg.device)
return topk_acc
def torch_model_exists(self, **kwargs):
return os.path.exists(self.ckpt_path)
def save_torch_model(self, torch_model, **kwargs):
if not os.path.exists(self.torch_model_path):
os.makedirs(self.torch_model_path)
topk_acc = self.eval(torch_model)
torch.save(
{
'top1_acc': topk_acc["top1"],
'top3_acc': topk_acc["top3"],
'top5_acc': topk_acc["top5"],
'iters': self.iters,
'seed': self.seed,
'state_dict': torch_model.state_dict()
},
self.ckpt_path,
)
def load_saved_weights(self, torch_model, **kwargs):
"""
load weights in the latest checkpoint to torch_model
"""
if os.path.exists(self.ckpt_path):
ckpt = torch.load(self.ckpt_path, map_location="cpu")
torch_model.load_state_dict(ckpt['state_dict'], state_dict=True)
self.logger.info('load_saved_weights: loaded a previous checkpoint')
else:
self.logger.info('load_saved_weights: no previous checkpoint found')
return torch_model
def load_torch_model(self, **kwargs):
"""
load the model object from torch_model_path
:return: torch.nn.Module object
"""
torch_model = mloader.load_model(self.dataset_id, self.arch_id, pretrained=False)
ckpt = torch.load(self.ckpt_path, map_location="cpu")
m = re.match(r'(\S+)\((\S*)\)', self.trans_str)
method = m.group(1)
params = m.group(2).split(',')
if method == "negative" and "vit" in self.trans_str:
from model.inputx224.ViT import vit_base_patch32_224_sam
torch_model = vit_base_patch32_224_sam(num_classes=1000, pretrained=True)
if method == 'quantize':
dtype = params[0]
dtype = torch.qint8 if dtype == 'qint8' else torch.float16
# load from teacher model & quantize
self.teacher_wrapper.gen_model(seed=1000)
teacher_model = self.teacher_wrapper.load_torch_model()
torch_model.load_state_dict(teacher_model.state_dict(), strict=True)
torch_model = torch.quantization.quantize_dynamic(torch_model, qconfig_spec={torch.nn.Linear}, inplace=True, dtype=dtype)
print("-> load model from: quantize!!!!!")
else:
torch_model.load_state_dict(ckpt['state_dict'], strict=True)
print(f"-> load model from:{self.ckpt_path}")
torch_model.seed = self.seed
torch_model.task = self.__str__()
torch_model.arch_id = self.arch_id
torch_model.dataset_id = self.dataset_id
return torch_model
@helper.lazy_property
def torch_model(self):
return self.load_torch_model
def gen_model(self, seed=1000, regenerate=False, **kwargs):
"""
TODO: Rewrite this function!!!
generate the torch model, seed=1000 is the default seed of teacher model
:return:
"""
self.seed = seed
helper.set_default_seed(self.seed)
trans_str = self.trans_str
if not regenerate and self.torch_model_exists():
self.logger.info(f'-> model already exists: {self.__str__()}')
return
self.logger.info(f'-> generating model for: {self.__str__()}')
m = re.match(r'(\S+)\((\S*)\)', trans_str)
method = m.group(1)
params = m.group(2).split(',')
if regenerate and os.path.exists(self.torch_model_path) and (method != 'quantize'):
shutil.rmtree(self.torch_model_path)
if not os.path.exists(self.torch_model_path):
os.makedirs(self.torch_model_path)
teacher_model = None
if self.teacher_wrapper:
self.teacher_wrapper.gen_model(seed=1000)
teacher_model = self.teacher_wrapper.load_torch_model()
train_loader = dloader.get_dataloader(self.dataset_id, split='train')
test_loader = dloader.get_dataloader(self.dataset_id, split='test')
cfg = dloader.load_cfg(self.dataset_id, self.arch_id)
cfg.iterations = self.iters
cfg.output_dir = self.torch_model_path
cfg.seed = self.seed
cfg.task_str = str(self.__str__() + f"_seed{cfg.seed}")
if method == 'pretrain':
# load pretrained model as specified by arch_id and save it to model path
arch_id = params[0]
dataset_id = params[1]
if dataset_id != 'ImageNet':
self.logger.warning(f'gen_model: pretrained model on {dataset_id} not supported')
exit(1)
torch_model = mloader.load_model(
dataset_id=dataset_id,
arch_id=arch_id,
pretrained=False,
pretrain="imagenet"
)
self.save_torch_model(torch_model)
elif method == 'train':
# train the model from scratch
arch_id = params[0]
dataset_id = params[1]
torch_model = mloader.load_model(
dataset_id=dataset_id,
arch_id=arch_id,
pretrained=False
)
cfg.network = self.arch_id
cfg.ft_ratio = 1
cfg.reinit = True
cfg.weight_decay = 5e-3
cfg.momentum = 0.8
if CONTINUE_TRAIN:
torch_model = self.load_saved_weights(torch_model) # continue training
finetuner = Finetuner(
cfg,
torch_model, torch_model,
train_loader, test_loader,
init_models=False
)
finetuner.train()
self.save_torch_model(torch_model)
elif method == 'quantize':
dtype = params[0]
dtype = torch.qint8 if dtype == 'qint8' else torch.float16
student_model = mloader.load_model(dataset_id=self.dataset_id, arch_id=self.arch_id)
student_model.load_state_dict(teacher_model.state_dict(), strict=True)
student_model = torch.quantization.quantize_dynamic(student_model, dtype=dtype, inplace=True)
self.save_torch_model(student_model, seed=seed)
elif method == 'prune':
prune_ratio = float(params[0])
student_model = mloader.load_model(dataset_id=self.dataset_id, arch_id=self.arch_id)
student_model.load_state_dict(teacher_model.state_dict(), strict=True)
#cfg.method = "weight"
cfg.network = self.arch_id
cfg.weight_ratio = prune_ratio
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = WeightPruner(
cfg,
student_model, teacher_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(student_model, seed=seed)
finetuner.final_check_param_num()
elif method == 'finetune':
dataset_id = params[0]
tune_ratio = float(params[1])
cfg.ft_ratio = tune_ratio
cfg.network = self.arch_id
cfg.lr = cfg.finetune_lr
student_model = mloader.load_model(dataset_id=dataset_id, arch_id=self.arch_id)
student_model.load_state_dict(teacher_model.state_dict(), strict=True)
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
cfg,
student_model, teacher_model,
train_loader, test_loader,
init_models=False
)
finetuner.train()
self.save_torch_model(student_model, seed=seed)
elif method == 'retraining':
dataset_id = params[0]
tune_ratio = float(params[1])
cfg.ft_ratio = tune_ratio
cfg.retrain_linear = True
cfg.network = self.arch_id
student_model = mloader.load_model(dataset_id=dataset_id, arch_id=self.arch_id)
student_model.load_state_dict(teacher_model.state_dict(), strict=True)
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
cfg,
student_model, teacher_model,
train_loader, test_loader,
init_models=True
)
finetuner.train()
self.save_torch_model(student_model, seed=seed)
elif method == 'distill':
cfg.feat_lmda = 0.1
cfg.network = self.arch_id
cfg.weight_decay = 1e-4
cfg.momentum = 0.8
cfg.lr = 1e-3
cfg.reinit = False
#cfg.retrain_linear = float(params[0])
student_model = mloader.load_model(
dataset_id=self.dataset_id,
arch_id=self.arch_id,
pretrained=False
)
student_model.load_state_dict(teacher_model.state_dict(), strict=True)
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
cfg,
student_model, teacher_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(student_model, seed=seed)
elif method == 'steal':
arch_id = params[0]
student_model = mloader.load_model(
dataset_id=self.dataset_id,
arch_id=self.arch_id,
pretrained=False
)
cfg.network = arch_id
cfg.steal = True
cfg.reinit = True
cfg.retrain_linear = 1.0
cfg.steal_alpha = 0.5
cfg.temperature = 1.0
cfg.weight_decay = 5e-3
cfg.momentum = 0.9
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
cfg,
student_model, teacher_model,
train_loader, test_loader,
init_models=False
)
finetuner.train()
self.save_torch_model(student_model, seed=seed)
elif method == "negative":
arch_id = params[0]
# use output distillation to transfer teacher knowledge to another architecture
student_model = mloader.load_model(
dataset_id=self.dataset_id,
arch_id=self.arch_id,
pretrained=False
)
cfg.network = arch_id
cfg.negative = True
cfg.reinit = True
cfg.weight_decay = 5e-3
cfg.momentum = 0.9
cfg.backends = False
finetuner = Trainer(
cfg,
student_model, teacher_model,
train_loader, test_loader
)
finetuner.train()
self.save_torch_model(student_model, seed=seed)
else:
raise RuntimeError(f'unknown transformation: {method}')
def knockoff(self, arch, subset, seed=1000, **kwargs):
trans_str = f'knockoff({arch},{subset})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
seed=seed,
**kwargs
)
return model_wrapper
def quantize(self, dtype='qint8', seed=1000, **kwargs):
"""
do post-training quantization on the model
:param dtype: qint8 or float16
:return:
"""
trans_str = f'quantize({dtype})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
seed=seed,
**kwargs
)
return model_wrapper
def prune(self, prune_ratio=0.1, iters=10000, seed=1000, **kwargs):
trans_str = f'prune({prune_ratio})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
iters=iters,
seed=seed,
**kwargs
)
return model_wrapper
def finetune(self, dataset_id, tune_ratio=0.1, iters=10000, seed=1000, **kwargs):
trans_str = f'finetune({dataset_id},{tune_ratio})'
# model_wrapper is the wrapper of the student model
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
dataset_id=dataset_id,
iters=iters,
seed=seed,
**kwargs
)
return model_wrapper
def retraining(self, dataset_id, tune_ratio=0.1, iters=10000, seed=1000, **kwargs):
trans_str = f'retraining({dataset_id},{tune_ratio})'
# model_wrapper is the wrapper of the student model
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
dataset_id=dataset_id,
iters=iters,
seed=seed,
**kwargs
)
return model_wrapper
def distill(self, retrain_ratio, iters=10000, seed=1000, **kwargs):
trans_str = f'distill({retrain_ratio})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
iters=iters,
seed=seed,
**kwargs
)
return model_wrapper
def steal(self, arch_id, iters=10000, seed=1000, **kwargs):
trans_str = f'steal({arch_id})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
arch_id=arch_id,
iters=iters,
seed=seed,
**kwargs
)
return model_wrapper
def negative(self, arch_id, iters=10000, seed=1000, **kwargs):
trans_str = f'negative({arch_id})'
# init param & retrain the model using ground-truth label
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
arch_id=arch_id,
iters=iters,
seed=seed,
**kwargs
)
return model_wrapper
def removalnet(self, dataset_id, iters=10000, seed=1000, **kwargs):
"""TODO: RemovalNet, what to save as params"""
keyword = ""
for k in kwargs.keys():
keyword += f"{kwargs[k]},"
trans_str = f'removalnet({dataset_id},{keyword[:-1]})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
iters=iters,
seed=seed,
dataset_id=dataset_id,
**kwargs
)
return model_wrapper
class ImageBenchmark:
def __init__(self, datasets, archs, datasets_dir='dataset/data', models_dir='model/ckpt'):
self.logger = logging.getLogger('ImageBench')
self.archs = [archs] if type(archs) == str else archs
self.datasets = [datasets] if type(datasets) == str else datasets
self.datasets_dir = datasets_dir
self.models_dir = models_dir
def load_pretrained(self, arch_id, seed=1000, fc=True):
"""
Get the model pretrained on imagenet
:param arch_id: the name of the arch
:return: a ModelWrapper instance
"""
model_wrapper = ModelWrapper(
benchmark=self,
teacher_wrapper=None,
trans_str=f'pretrain({arch_id},ImageNet)',
arch_id=arch_id,
dataset_id='ImageNet',
fc=fc,
seed=1000
)
return model_wrapper
def load_trained(self, arch_id, dataset_id, seed=1000, iters=10000, fc=True):
"""
Get the model with architecture arch_id trained on dataset dataset_id
:param arch_id: the name of the arch
:param dataset_id: the name of the dataset
:param iters: number of iterations
:return: a ModelWrapper instance
"""
model_wrapper = ModelWrapper(
benchmark=self,
teacher_wrapper=None,
trans_str=f'train({arch_id},{dataset_id})',
arch_id=arch_id,
dataset_id=dataset_id,
iters=iters,
fc=fc,
seed=1000
)
self.logger.info(f"-> load trained model:{str(model_wrapper)}")
return model_wrapper
def load_wrapper(self, name, seed=1000, fc=True, **kwargs):
"""
Get model by name.
:param name:
:param fc:
:param kwargs:
:return:
"""
m = name.split("-")[:-1]
def extract(name):
gen_type = str(name.split("(")[0])
params = name.split("(")[1].split(")")[0].split(",")
return gen_type, params
gen_type, (arch_id, dataset_id) = extract(m[0])
if gen_type == "pretrain":
source_model = self.load_pretrained(arch_id, fc=fc, seed=1000)
elif gen_type == "train":
source_model = self.load_trained(arch_id, dataset_id=dataset_id, fc=fc, seed=1000)
else:
raise NotImplementedError(f"-> [ERROR] method:{gen_type} not found!")
target_model = source_model
for item in list(m[1:]):
gen_type, params = extract(item)
if gen_type == "transfer":
target_model = target_model.transfer(dataset_id=params[0], tune_ratio=params[1], seed=seed, **kwargs)
elif gen_type == "finetune":
target_model = target_model.finetune(dataset_id=params[0], tune_ratio=params[1], seed=seed, **kwargs)
elif gen_type == "retraining":
target_model = target_model.retraining(dataset_id=params[0], tune_ratio=params[1], seed=seed, **kwargs)
elif gen_type == "distill":
target_model = target_model.distill(retrain_ratio=params[0], seed=seed, **kwargs)
elif gen_type == "prune":
target_model = target_model.prune(params[0], seed=seed, **kwargs)
elif gen_type == "quantize":
target_model = target_model.quantize(params[0], seed=seed, **kwargs)
elif gen_type == "steal":
target_model = target_model.steal(params[0], seed=seed, **kwargs)
elif gen_type == "negative":
target_model = target_model.negative(params[0], seed=seed, **kwargs)
elif gen_type == "knockoff":
target_model = target_model.knockoff(params[0], params[1], seed=seed, **kwargs)
elif gen_type == "removalnet":
r = float(params[1])
if round(r, 2) - round(r, 1) != 0:
rate = round(r, 2)
else:
rate = round(r, 1)
target_model = target_model.removalnet(dataset_id=params[0], rate=rate, alpha=params[2], beta=params[3], T=params[4], layer=params[5], seed=seed, **kwargs)
else:
raise NotImplementedError(f"-> [ERROR] method:{gen_type} not found!")
self.logger.info(f"-> load model: {target_model}")
return target_model
def list_models(self, cfg, fc=True, seeds=None, methods=["negative", "finetune", "distill", "steal", "prune"]):
"""
list the models in the benchmark dataset
:return: a stream of ModelWrapper instances
"""
source_models = []
quantization_dtypes = ['qint8', 'float16']
prune_ratios = [0.5, 0.8]
finetune_ratios = [0.5, 0.8]
distill_ratios = [1.0]
seeds = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000] if seeds is None else seeds
# train source models
source_models = []
for arch_id in self.archs:
for dataset_id in self.datasets:
source_model = self.load_trained(arch_id, dataset_id, iters=cfg.TRAIN_ITERS, seed=1000, fc=fc)
source_models.append(source_model)
yield source_model
if "negative" in methods:
# independent training, negative models
for source_model in source_models:
for seed in seeds:
negative_model = source_model.negative(arch_id=arch_id, iters=cfg.NEGATIVE_ITERS, seed=seed)
yield negative_model
if "retraining" in methods:
for retrain_model in source_models:
for ratio in finetune_ratios:
for seed in seeds:
yield retrain_model.retraining(dataset_id=dataset_id, iters=cfg.FINETUNING_ITERS, tune_ratio=ratio, seed=seed)
if "finetune" in methods:
for retrain_model in source_models:
for ratio in finetune_ratios:
for seed in seeds:
yield retrain_model.finetune(dataset_id=dataset_id, iters=cfg.FINETUNING_ITERS, tune_ratio=ratio, seed=seed)
if "prune" in methods:
# - M_{i,x}/{prune-p} -- Prune M_{i,x} with pruning ratio = p
for retrain_model in source_models:
for pr in prune_ratios:
for seed in seeds:
yield retrain_model.prune(prune_ratio=pr, iters=cfg.PRUNE_ITERS, seed=seed)
if "quantize" in methods:
for retrain_model in source_models:
for quantization_dtype in quantization_dtypes:
for seed in seeds:
yield retrain_model.quantize(dtype=quantization_dtype, iters=cfg.QUANTIZE_ITERS, seed=seed)
if "distill" in methods:
# - M_{i,x}/{distill} -- Distill M_{i,x}
for retrain_model in source_models:
for ratio in distill_ratios:
for seed in seeds:
yield retrain_model.distill(retrain_ratio=ratio, iters=cfg.DISTILL_ITERS, seed=seed)
if "steal" in methods:
# - M_{i,x}/{steal-j} -- Steal M_{i,x} to A_j
for retrain_model in source_models:
for arch_id in self.archs:
for seed in seeds:
yield retrain_model.steal(arch_id=arch_id, iters=cfg.STEAL_ITERS, seed=seed)
def get_args():
parser = argparse.ArgumentParser(description="Build basic RemovalNet.")
parser.add_argument("-datasets_dir", required=False, action="store", dest="datasets_dir", default=osp.join(helper.ROOT, "dataset/data"),
help="Path to the dir of datasets.")
parser.add_argument("-models_dir", action="store", dest="models_dir", default=osp.join(helper.ROOT, "model/ckpt"),
help="Path to the dir of benchmark models.")
parser.add_argument("-regenerate", action="store_true", dest="regenerate", default=False,
help="Whether to regenerate the models.")
parser.add_argument("-model1", action="store", dest="model1", default="pretrain(resnet18,ImageNet)-",
required=False, help="model 1.")
parser.add_argument("-model2", action="store", dest="model2", default="pretrain(resnet18,ImageNet)-transfer(Flower102,0.1)-",
required=False, help="model 2.")
parser.add_argument("-tag", required=False, type=str, help="tag of script.")
parser.add_argument("-dataset", required=False, type=str, default="CIFAR10", help="model archtecture")
parser.add_argument("-subset", required=False, type=str, default=None, help="surrogate dataset")
parser.add_argument("-device", action="store", default=1, type=int, help="GPU device id")
parser.add_argument("-seed", default=1000, type=int, help="Default seed of numpy/pyTorch")
args, unknown = parser.parse_known_args()
args.ROOT = helper.ROOT
args.namespace = helper.curr_time
args.out_root = osp.join(helper.ROOT, "output")
args.logs_root = osp.join(helper.ROOT, "logs")
# support datasets: CIFAR10, CINIC10, CelebA, LFW, VGGFace2, SkinCancer, HAM10000, BCN20000, ImageNet
# support architectures: resnet50, vgg16_bn, vgg19_bn, densenet121, mobilenet_v2
args.subset = args.dataset if args.subset is None else args.subset
args.archs = {
"CIFAR10": ["vgg19_bn"],
"CINIC10": ["resnet50"],
"GTSRB": ["inception_v3"],
"GTSRB+1": ["inception_v3"],
"SkinCancer": ["resnet50"],
"HAM10000": ["inception_v3"],
"BCN20000": ["resnet50"],
"ImageNet": ["vit_base_patch32_224"]
}
arch_for_celeba = ["inception_v3"]
for attr_idx in range(40):
args.archs[f"CelebA32+{attr_idx}"] = arch_for_celeba
args.archs[f"CelebA+{attr_idx}"] = arch_for_celeba
args.device = torch.device(f"cuda:{args.device}") if torch.cuda.is_available() else "cpu"
helper.set_default_seed(seed=args.seed)
for path in [args.datasets_dir, args.models_dir, args.out_root, args.logs_root]:
if not osp.exists(path):
os.makedirs(path)
return args
def gen_model():
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s")
logger = logging.getLogger("Benchmark")
args = get_args()
print(f"-> Running with config:{args}")
dataset = args.dataset
cfg = dloader.load_cfg(dataset_id=dataset, arch_id="")
benchmk = ImageBenchmark(
archs=args.archs[dataset], datasets=[dataset],
datasets_dir=args.datasets_dir, models_dir=args.models_dir
)
seeds = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000]
#seeds += [1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000]
seeds1 = [100, 200, 300, 400]
seeds2 = [400, 500, 600]
seeds3 = [700, 800, 900, 1000]
seeds4 = [1000, 600, 300]
# seeds = seeds2
models = benchmk.list_models(cfg=cfg, methods=["distill", "finetune", "prune", "negative"], seeds=seeds)
for idx, model in enumerate(models):
logger.info(f"-> idx:{idx} runing for model:{model} seed:{model.seed}")
model.gen_model(seed=model.seed)
print()
def eval_model():
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s")
logger = logging.getLogger("Benchmark")
args = get_args()
print(f"-> Running with config:{args}")
dataset = args.dataset
cfg = dloader.load_cfg(dataset_id=dataset, arch_id="")
benchmk = ImageBenchmark(
archs=args.archs[dataset], datasets=[dataset],
datasets_dir=args.datasets_dir, models_dir=args.models_dir
)
model = benchmk.load_wrapper(args.model1, seed=args.seed).load_torch_model()
test_loader = dloader.get_dataloader(dataset_id=args.dataset, split="test", batch_size=1000)
from torchsummary import summary
summary(model, input_size=(3, 224, 224))
#metric.topk_test(model, test_loader=test_loader, device=args.device, epoch=0, debug=True)
if __name__ == "__main__":
gen_model()