-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg_agent.py
169 lines (137 loc) · 6.86 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import random
from collections import namedtuple, deque
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from model import DDPGNet
from OUNoise import OUNoise
BUFFER_SIZE = int(1e5) # replay buffer size
BATCH_SIZE = 256 #64 # minibatch size
GAMMA = 0.99 # discount factor
TAU = 1e-3 # for soft update of target parameters
LR = 1e-4 # learning rate
UPDATE_EVERY = 2 # how often to update the network
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class DDPGAgent:
"""
main DDPG model with
Replay buffer
soft update
actor and critic step
soft update
"""
def __init__(self, in_actor, hidden_in_actor, hidden_out_actor, out_actor, in_critic, \
hidden_in_critic, hidden_out_critic, seed = 0, lr_actor=1.0e-3, lr_critic=1.0e-3):
self.actor = DDPGNet(in_actor, hidden_in_actor, hidden_out_actor, out_actor, actor = True).to(device)
self.target_actor = DDPGNet(in_actor, hidden_in_actor, hidden_out_actor, out_actor, actor = True).to(device)
self.critic = DDPGNet(in_critic, hidden_in_actor, hidden_out_actor, 1, actor = False).to(device)
self.target_critic = DDPGNet(in_critic, hidden_in_actor, hidden_out_actor, 1, actor = False).to(device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr_actor)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr_critic)
self.memory = ReplayBuffer(out_actor, BUFFER_SIZE, BATCH_SIZE, seed)
self.noise = OUNoise(out_actor, scale=1.0 )
self.action_size = out_actor
self.t_step = 0
self.soft_update(self.actor, self.target_actor, 1.)
self.soft_update(self.critic, self.target_critic, 1.)
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, eps = 0.0):
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.target_actor.eval()
with torch.no_grad():
action_values = self.target_actor(state)
self.target_actor.train()
action_vals_npy = action_values.cpu().data.numpy()
#action_vals_npy += 0.1*self.noise.noise()
action_vals_npy += self.noise.noise()
# Epsilon-greedy action selection
if random.random() > eps:
return np.clip(action_vals_npy, -1, 1)#action_values.cpu().data.numpy()
else:
return np.array([random.uniform(-1,1) for _ in range(self.action_size)]) #random.choice(np.arange(self.action_size))
def learn(self, experiences, GAMMA):
"""
main learning loop
"""
# 1) get sample from the replay buffer
states, actions, rewards, next_states, dones = experiences
#import pdb; pdb.set_trace()
# 2) Compute target q_vals
mask_done = (1-dones).view(-1,1)
action_next = self.target_actor(next_states)
state_action_next = torch.cat((next_states, action_next.float()),1)
q_vals_next = self.target_critic(state_action_next)
q_vals_next = rewards + GAMMA
state_action_vec = torch.cat((states, actions.float()),1)
q_vals = self.critic(state_action_vec)
# 4) critic MSE loss
critic_loss = F.mse_loss(q_vals, q_vals_next)
# 5) Gradient descent on target and Q
# backward descent by default
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# 6) Gradient ascent on the policy
q_actions = self.actor(states)
sa_actor_vec = torch.cat((states, q_actions),1)
actor_loss = -self.critic(sa_actor_vec).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# 7) update both the networks
self.soft_update(self.actor, self.target_actor, TAU)
self.soft_update(self.critic, self.target_critic, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)