|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +# Copyright 2024 Google LLC |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +# |
| 17 | +"""Unit tests for autorater utils.""" |
| 18 | + |
| 19 | +import copy |
| 20 | +import datetime |
| 21 | +from typing import Any, Dict, List |
| 22 | +from unittest import mock |
| 23 | +import uuid |
| 24 | + |
| 25 | +from google import auth |
| 26 | +from google.auth import credentials as auth_credentials |
| 27 | +import vertexai |
| 28 | +from google.cloud.aiplatform import compat |
| 29 | +from google.cloud.aiplatform import initializer |
| 30 | +from google.cloud.aiplatform import utils as aiplatform_utils |
| 31 | +from google.cloud.aiplatform_v1beta1.services import gen_ai_tuning_service |
| 32 | +from google.cloud.aiplatform_v1beta1.types import job_state |
| 33 | +from google.cloud.aiplatform_v1beta1.types import ( |
| 34 | + tuning_job as gca_tuning_job, |
| 35 | +) |
| 36 | +from vertexai.preview import tuning |
| 37 | +from vertexai.preview.evaluation import autorater_utils |
| 38 | +from vertexai.preview.evaluation.metrics import pairwise_metric |
| 39 | +from vertexai.preview.evaluation.metrics import pointwise_metric |
| 40 | +import numpy as np |
| 41 | +import pandas as pd |
| 42 | +import pytest |
| 43 | + |
| 44 | + |
| 45 | +AutoraterConfig = autorater_utils.AutoraterConfig |
| 46 | +PointwiseMetric = pointwise_metric.PointwiseMetric |
| 47 | +PairwiseMetric = pairwise_metric.PairwiseMetric |
| 48 | + |
| 49 | +_TEST_PROJECT = "test-project" |
| 50 | +_TEST_LOCATION = "us-central1" |
| 51 | + |
| 52 | + |
| 53 | +_global_tuning_jobs: Dict[str, gca_tuning_job.TuningJob] = {} |
| 54 | +_SCORE = "score" |
| 55 | +_METRIC = "metric" |
| 56 | +_PAIRWISE_CHOICE = "pairwise_choice" |
| 57 | +_HUMAN_RATING = "human_rating" |
| 58 | +_HUMAN_PAIRWISE_CHOICE = "human_pairwise_choice" |
| 59 | +_ACCURACY_BALANCED = "accuracy_balanced" |
| 60 | +_F1_SCORE_BALANCED = "f1_score_balanced" |
| 61 | +_CONFUSION_MATRIX = "confusion_matrix" |
| 62 | +_CONFUSION_MATRIX_LABELS = "confusion_matrix_labels" |
| 63 | + |
| 64 | + |
| 65 | +@pytest.fixture |
| 66 | +def google_auth_mock(): |
| 67 | + with mock.patch.object(auth, "default") as google_auth_default_mock: |
| 68 | + google_auth_default_mock.return_value = ( |
| 69 | + auth_credentials.AnonymousCredentials(), |
| 70 | + _TEST_PROJECT, |
| 71 | + ) |
| 72 | + yield google_auth_default_mock |
| 73 | + |
| 74 | + |
| 75 | +class MockGenAiTuningServiceClient(gen_ai_tuning_service.GenAiTuningServiceClient): |
| 76 | + """Mock GenAiTuningServiceClient.""" |
| 77 | + |
| 78 | + @property |
| 79 | + def _tuning_jobs(self) -> Dict[str, gca_tuning_job.TuningJob]: |
| 80 | + return _global_tuning_jobs |
| 81 | + |
| 82 | + def create_tuning_job( |
| 83 | + self, |
| 84 | + *, |
| 85 | + parent: str, |
| 86 | + tuning_job: gca_tuning_job.TuningJob, |
| 87 | + **_, |
| 88 | + ) -> gca_tuning_job.TuningJob: |
| 89 | + tuning_job = copy.deepcopy(tuning_job) |
| 90 | + resource_id = uuid.uuid4().hex |
| 91 | + resource_name = f"{parent}/tuningJobs/{resource_id}" |
| 92 | + tuning_job.name = resource_name |
| 93 | + current_time = datetime.datetime.now(datetime.timezone.utc) |
| 94 | + tuning_job.tuned_model = gca_tuning_job.TunedModel( |
| 95 | + model=f"{parent}/models/123", |
| 96 | + endpoint=f"{parent}/endpoints/456", |
| 97 | + ) |
| 98 | + tuning_job.state = job_state.JobState.JOB_STATE_SUCCEEDED |
| 99 | + tuning_job.create_time = current_time |
| 100 | + tuning_job.update_time = current_time |
| 101 | + self._tuning_jobs[resource_name] = tuning_job |
| 102 | + return tuning_job |
| 103 | + |
| 104 | + def get_tuning_job(self, *, name: str, **_) -> gca_tuning_job.TuningJob: |
| 105 | + tuning_job = self._tuning_jobs[name] |
| 106 | + tuning_job = copy.deepcopy(tuning_job) |
| 107 | + return tuning_job |
| 108 | + |
| 109 | + |
| 110 | +class MockTuningJobClientWithOverride(aiplatform_utils.ClientWithOverride): |
| 111 | + _is_temporary = False |
| 112 | + _default_version = compat.V1 |
| 113 | + _version_map = ((compat.V1, MockGenAiTuningServiceClient),) |
| 114 | + |
| 115 | + |
| 116 | +@pytest.mark.usefixtures("google_auth_mock") |
| 117 | +class TestAutoraterUtils: |
| 118 | + """Unit tests for generative model tuning.""" |
| 119 | + |
| 120 | + def setup_method(self): |
| 121 | + vertexai.init( |
| 122 | + project=_TEST_PROJECT, |
| 123 | + location=_TEST_LOCATION, |
| 124 | + ) |
| 125 | + |
| 126 | + def teardown_method(self): |
| 127 | + initializer.global_pool.shutdown(wait=True) |
| 128 | + |
| 129 | + @mock.patch.object( |
| 130 | + target=tuning.TuningJob, |
| 131 | + attribute="client_class", |
| 132 | + new=MockTuningJobClientWithOverride, |
| 133 | + ) |
| 134 | + def test_tune_autorater(self): |
| 135 | + """Test tune_autorater.""" |
| 136 | + autorater_config = autorater_utils.tune_autorater( |
| 137 | + base_model="gemini-1.0-pro-001", |
| 138 | + train_dataset="gs://test-bucket/train_dataset.jsonl", |
| 139 | + validation_dataset="gs://test-bucket/validation_dataset.jsonl", |
| 140 | + epochs=300, |
| 141 | + learning_rate_multiplier=1.0, |
| 142 | + time_out_hours=0, |
| 143 | + ) |
| 144 | + assert autorater_config.autorater_model == ( |
| 145 | + "projects/test-project/locations/us-central1/endpoints/456" |
| 146 | + ) |
| 147 | + |
| 148 | + def test_evaluate_autorater(self): |
| 149 | + """Test evaluate_autorater.""" |
| 150 | + autorater_config = autorater_utils.AutoraterConfig( |
| 151 | + autorater_model="projects/test-project/locations/us-central1/endpoints/456" |
| 152 | + ) |
| 153 | + y_true_2_class = [1, 0, 1, 0, 1, 0] |
| 154 | + y_pred_2_class = [1, 0, 0, 1, 1, 0] |
| 155 | + y_true_multi_class = ["1", "2", "1", "1", "2", "3"] |
| 156 | + y_pred_multi_class = [ |
| 157 | + "2", |
| 158 | + "2", |
| 159 | + "1", |
| 160 | + "1", |
| 161 | + "2", |
| 162 | + "1", |
| 163 | + ] |
| 164 | + metrics = [ |
| 165 | + PairwiseMetric( |
| 166 | + metric="test_pairwise_2_class", |
| 167 | + metric_prompt_template="test prompt1", |
| 168 | + ), |
| 169 | + PointwiseMetric( |
| 170 | + metric="test_pointwise_multi_class", |
| 171 | + metric_prompt_template="test prompt2", |
| 172 | + ), |
| 173 | + ] |
| 174 | + autorater_eval_result = autorater_utils.evaluate_autorater( |
| 175 | + evaluate_autorater_input=pd.DataFrame( |
| 176 | + { |
| 177 | + f"test_pairwise_2_class/{_PAIRWISE_CHOICE}": y_pred_2_class, |
| 178 | + f"test_pairwise_2_class/{_HUMAN_PAIRWISE_CHOICE}": y_true_2_class, |
| 179 | + f"test_pointwise_multi_class/{_SCORE}": y_pred_multi_class, |
| 180 | + f"test_pointwise_multi_class/{_HUMAN_RATING}": y_true_multi_class, |
| 181 | + } |
| 182 | + ), |
| 183 | + eval_metrics=metrics, |
| 184 | + autorater_config=autorater_config, |
| 185 | + eval_dataset_metadata={ |
| 186 | + "eval_dataset_path": "gs://test-bucket/eval_dataset.jsonl", |
| 187 | + "eval_dataset_size": 6, |
| 188 | + }, |
| 189 | + unused_params=10, |
| 190 | + ) |
| 191 | + expected_eval_results = [ |
| 192 | + { |
| 193 | + _METRIC: metrics[0].metric_name, |
| 194 | + _ACCURACY_BALANCED: 2 / 3, |
| 195 | + _F1_SCORE_BALANCED: 2 / 3, |
| 196 | + _CONFUSION_MATRIX: np.array([[2, 1], [1, 2]]), |
| 197 | + _CONFUSION_MATRIX_LABELS: ["0", "1"], |
| 198 | + }, |
| 199 | + { |
| 200 | + _METRIC: metrics[1].metric_name, |
| 201 | + _ACCURACY_BALANCED: 5 / 9, |
| 202 | + _F1_SCORE_BALANCED: 3 / 5, |
| 203 | + _CONFUSION_MATRIX: np.array([[2, 1, 0], [0, 2, 0], [1, 0, 0]]), |
| 204 | + _CONFUSION_MATRIX_LABELS: ["1.0", "2.0", "3.0"], |
| 205 | + }, |
| 206 | + ] |
| 207 | + |
| 208 | + assert _compare_autorater_eval_result( |
| 209 | + autorater_eval_result.eval_result, expected_eval_results |
| 210 | + ) |
| 211 | + assert autorater_eval_result.eval_dataset_metadata == { |
| 212 | + "eval_dataset_path": "gs://test-bucket/eval_dataset.jsonl", |
| 213 | + "eval_dataset_size": 6, |
| 214 | + } |
| 215 | + assert autorater_eval_result.autorater_config == autorater_config |
| 216 | + assert autorater_eval_result.unused_params == 10 |
| 217 | + |
| 218 | + def test_evaluate_autorater_exceed_pointwise_limit(self): |
| 219 | + """Test evaluate_autorater.""" |
| 220 | + autorater_config = autorater_utils.AutoraterConfig( |
| 221 | + autorater_model="projects/test-project/locations/us-central1/endpoints/456" |
| 222 | + ) |
| 223 | + y_true_multi_class = [_ for _ in range(12)] |
| 224 | + y_pred_multi_class = [_ for _ in range(12)] |
| 225 | + metrics = [ |
| 226 | + PointwiseMetric( |
| 227 | + metric="test_pointwise_multi_class", |
| 228 | + metric_prompt_template="test prompt2", |
| 229 | + ), |
| 230 | + ] |
| 231 | + autorater_eval_result = autorater_utils.evaluate_autorater( |
| 232 | + evaluate_autorater_input=pd.DataFrame( |
| 233 | + { |
| 234 | + f"test_pointwise_multi_class/{_SCORE}": y_pred_multi_class, |
| 235 | + f"test_pointwise_multi_class/{_HUMAN_RATING}": y_true_multi_class, |
| 236 | + } |
| 237 | + ), |
| 238 | + eval_metrics=metrics, |
| 239 | + autorater_config=autorater_config, |
| 240 | + eval_dataset_metadata={ |
| 241 | + "eval_dataset_path": "gs://test-bucket/eval_dataset.jsonl", |
| 242 | + "eval_dataset_size": 6, |
| 243 | + }, |
| 244 | + unused_params=10, |
| 245 | + ) |
| 246 | + assert autorater_eval_result.eval_result == [ |
| 247 | + { |
| 248 | + _METRIC: metrics[0].metric_name, |
| 249 | + _ACCURACY_BALANCED: 1.0, |
| 250 | + _F1_SCORE_BALANCED: 1.0, |
| 251 | + }, |
| 252 | + ] |
| 253 | + assert autorater_eval_result.eval_dataset_metadata == { |
| 254 | + "eval_dataset_path": "gs://test-bucket/eval_dataset.jsonl", |
| 255 | + "eval_dataset_size": 6, |
| 256 | + } |
| 257 | + assert autorater_eval_result.autorater_config == autorater_config |
| 258 | + assert autorater_eval_result.unused_params == 10 |
| 259 | + |
| 260 | + @mock.patch.object( |
| 261 | + target=tuning.TuningJob, |
| 262 | + attribute="client_class", |
| 263 | + new=MockTuningJobClientWithOverride, |
| 264 | + ) |
| 265 | + def test_evaluate_autorater_with_skipped_results(self): |
| 266 | + """Test evaluate_autorater.""" |
| 267 | + autorater_config = autorater_utils.AutoraterConfig( |
| 268 | + autorater_model="projects/test-project/locations/us-central1/endpoints/456" |
| 269 | + ) |
| 270 | + y_true_2_class = ["1", "0", "1", "0", "1", "0", "Error", "1"] |
| 271 | + y_pred_2_class = ["1", "0", "0", "1", "1", "0", "0", "ERROR"] |
| 272 | + y_true_multi_class = ["1", "2", "1", 1, "2", "3", "1", "NaN"] |
| 273 | + y_pred_multi_class = ["2", "2.0", "1", 1.0, "2", "1", "NaN", "1"] |
| 274 | + metrics = [ |
| 275 | + PairwiseMetric( |
| 276 | + metric="test_pairwise_2_class", |
| 277 | + metric_prompt_template="test prompt1", |
| 278 | + ), |
| 279 | + PointwiseMetric( |
| 280 | + metric="test_pointwise_multi_class", |
| 281 | + metric_prompt_template="test prompt2", |
| 282 | + ), |
| 283 | + ] |
| 284 | + autorater_eval_result = autorater_utils.evaluate_autorater( |
| 285 | + evaluate_autorater_input=pd.DataFrame( |
| 286 | + { |
| 287 | + f"test_pairwise_2_class/{_PAIRWISE_CHOICE}": y_pred_2_class, |
| 288 | + f"test_pairwise_2_class/{_HUMAN_PAIRWISE_CHOICE}": y_true_2_class, |
| 289 | + f"test_pointwise_multi_class/{_SCORE}": y_pred_multi_class, |
| 290 | + f"test_pointwise_multi_class/{_HUMAN_RATING}": y_true_multi_class, |
| 291 | + } |
| 292 | + ), |
| 293 | + eval_metrics=metrics, |
| 294 | + autorater_config=autorater_config, |
| 295 | + eval_dataset_metadata={ |
| 296 | + "eval_dataset_path": "gs://test-bucket/eval_dataset.jsonl", |
| 297 | + "eval_dataset_size": 6, |
| 298 | + }, |
| 299 | + unused_params=10, |
| 300 | + ) |
| 301 | + expected_eval_results = [ |
| 302 | + { |
| 303 | + _METRIC: metrics[0].metric_name, |
| 304 | + _ACCURACY_BALANCED: 2 / 3, |
| 305 | + _F1_SCORE_BALANCED: 2 / 3, |
| 306 | + _CONFUSION_MATRIX: np.array([[2, 1], [1, 2]]), |
| 307 | + _CONFUSION_MATRIX_LABELS: ["0", "1"], |
| 308 | + }, |
| 309 | + { |
| 310 | + _METRIC: metrics[1].metric_name, |
| 311 | + _ACCURACY_BALANCED: 5 / 9, |
| 312 | + _F1_SCORE_BALANCED: 3 / 5, |
| 313 | + _CONFUSION_MATRIX: np.array([[2, 1, 0], [0, 2, 0], [1, 0, 0]]), |
| 314 | + _CONFUSION_MATRIX_LABELS: ["1.0", "2.0", "3.0"], |
| 315 | + }, |
| 316 | + ] |
| 317 | + assert _compare_autorater_eval_result( |
| 318 | + autorater_eval_result.eval_result, expected_eval_results |
| 319 | + ) |
| 320 | + assert autorater_eval_result.eval_dataset_metadata == { |
| 321 | + "eval_dataset_path": "gs://test-bucket/eval_dataset.jsonl", |
| 322 | + "eval_dataset_size": 6, |
| 323 | + } |
| 324 | + assert autorater_eval_result.autorater_config == autorater_config |
| 325 | + assert autorater_eval_result.unused_params == 10 |
| 326 | + |
| 327 | + |
| 328 | +def _compare_autorater_eval_result( |
| 329 | + actual_eval_results: List[Dict[str, Any]], |
| 330 | + expected_eval_results: List[Dict[str, Any]], |
| 331 | +) -> bool: |
| 332 | + """Compare autorater eval result.""" |
| 333 | + for actual, expected in zip(actual_eval_results, expected_eval_results): |
| 334 | + if actual[_METRIC] != expected[_METRIC]: |
| 335 | + return False |
| 336 | + if not _almost_equal(actual[_ACCURACY_BALANCED], expected[_ACCURACY_BALANCED]): |
| 337 | + return False |
| 338 | + if not _almost_equal(actual[_F1_SCORE_BALANCED], expected[_F1_SCORE_BALANCED]): |
| 339 | + return False |
| 340 | + if not (actual[_CONFUSION_MATRIX] == expected[_CONFUSION_MATRIX]).all(): |
| 341 | + return False |
| 342 | + if actual[_CONFUSION_MATRIX_LABELS] != expected[_CONFUSION_MATRIX_LABELS]: |
| 343 | + return False |
| 344 | + return True |
| 345 | + |
| 346 | + |
| 347 | +def _almost_equal(a: Any, b: Any) -> bool: |
| 348 | + """Compare two numbers with a small tolerance.""" |
| 349 | + return abs(a - b) <= 1e-6 |
0 commit comments