-
Notifications
You must be signed in to change notification settings - Fork 361
/
Copy pathutils.py
379 lines (320 loc) · 13.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import functools
import io
import json
import os
import tempfile
import threading
import time
from typing import Any, Callable, Dict, Literal, Optional, TYPE_CHECKING, Union
from google.cloud import bigquery
from google.cloud import storage
from google.cloud.aiplatform import base
from google.cloud.aiplatform import compat
from google.cloud.aiplatform import initializer
from google.cloud.aiplatform import utils
from google.cloud.aiplatform.utils import _ipython_utils
from google.cloud.aiplatform_v1.services import (
evaluation_service as gapic_evaluation_services,
)
from vertexai.evaluation import _base as eval_base
if TYPE_CHECKING:
import pandas as pd
_BQ_PREFIX = "bq://"
_GCS_PREFIX = "gs://"
_LOGGER = base.Logger(__name__)
class _EvaluationServiceClientWithOverride(utils.ClientWithOverride):
_is_temporary = False
_default_version = compat.V1
_version_map = (
(
compat.V1,
gapic_evaluation_services.EvaluationServiceClient,
),
)
class RateLimiter:
"""Helper class for rate-limiting requests to Vertex AI to improve QoS.
Attributes:
seconds_per_event: The time interval (in seconds) between events to
maintain the desired rate.
last: The timestamp of the last event.
_lock: A lock to ensure thread safety.
"""
def __init__(self, rate: Optional[float] = None):
"""Initializes the rate limiter.
A simple rate limiter for controlling the frequency of API calls. This class
implements a token bucket algorithm to limit the rate at which events
can occur. It's designed for cases where the batch size (number of events
per call) is always 1 for traffic shaping and rate limiting.
Args:
rate: The number of queries allowed per second.
Raises:
ValueError: If the rate is not positive.
"""
if not rate or rate <= 0:
raise ValueError("Rate must be a positive number")
self.seconds_per_event = 1.0 / rate
self.last = time.time() - self.seconds_per_event
self._lock = threading.Lock()
def _admit(self) -> float:
"""Checks if an event can be admitted or calculates the remaining delay."""
now = time.time()
time_since_last = now - self.last
if time_since_last >= self.seconds_per_event:
self.last = now
return 0
else:
return self.seconds_per_event - time_since_last
def sleep_and_advance(self):
"""Blocks the current thread until the next event can be admitted."""
with self._lock:
delay = self._admit()
if delay > 0:
time.sleep(delay)
self.last = time.time()
def rate_limit(rate: Optional[float] = None) -> Callable[[Any], Any]:
"""Decorator version of rate limiter."""
def _rate_limit(method):
limiter = RateLimiter(rate)
@functools.wraps(method)
def wrapper(*args, **kwargs):
limiter.sleep_and_advance()
return method(*args, **kwargs)
return wrapper
return _rate_limit
def create_evaluation_service_client(
api_base_path_override: Optional[str] = None,
) -> _EvaluationServiceClientWithOverride:
"""Creates a client for the evaluation service.
Args:
api_base_path_override: Optional. Override default api base path.
Returns:
Instantiated Vertex AI EvaluationServiceClient with optional
overrides.
"""
return initializer.global_config.create_client(
client_class=_EvaluationServiceClientWithOverride,
location_override=initializer.global_config.location,
api_base_path_override=api_base_path_override,
)
def load_dataset(
source: Union[str, "pd.DataFrame", Dict[str, Any]],
) -> "pd.DataFrame":
"""Loads dataset from various sources into a DataFrame.
Args:
source: The dataset source. Supports the following dataset formats:
* pandas.DataFrame: Used directly for evaluation.
* Dict: Converted to a pandas DataFrame before evaluation.
* str: Interpreted as a file path or URI. Supported formats include:
* Local JSONL or CSV files: Loaded from the local filesystem.
* GCS JSONL or CSV files: Loaded from Google Cloud Storage
(e.g., 'gs://bucket/data.csv').
* BigQuery table URI: Loaded from Google Cloud BigQuery
(e.g., 'bq://project-id.dataset.table_name').
Returns:
The dataset in pandas DataFrame format.
"""
try:
import pandas as pd
except ImportError:
raise ImportError(
'Pandas is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
if isinstance(source, pd.DataFrame):
return source.copy()
elif isinstance(source, dict):
return pd.DataFrame(source)
elif isinstance(source, str):
if source.startswith(_BQ_PREFIX):
return _load_bigquery(source[len(_BQ_PREFIX) :])
_, extension = os.path.splitext(source)
file_type = extension.lower()[1:]
if file_type == "jsonl":
return _load_jsonl(source)
elif file_type == "csv":
return _load_csv(source)
else:
raise ValueError(
f"Unsupported file type: {file_type} from {source}. Please"
" provide a valid GCS path with `jsonl` or `csv` suffix or a valid"
" BigQuery table URI."
)
else:
raise TypeError(
"Unsupported dataset type. Must be a `pd.DataFrame`, Python dictionary,"
" valid GCS path with `jsonl` or `csv` suffix or a valid BigQuery table URI."
)
def _load_jsonl(filepath: str) -> "pd.DataFrame":
"""Loads data from a JSONL file into a DataFrame."""
try:
import pandas as pd
except ImportError:
raise ImportError(
'Pandas is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
if filepath.startswith(_GCS_PREFIX):
file_contents = _read_gcs_file_contents(filepath)
return pd.read_json(file_contents, lines=True)
else:
with open(filepath, "r") as f:
return pd.read_json(f, lines=True)
def _load_csv(filepath: str) -> "pd.DataFrame":
"""Loads data from a CSV file into a DataFrame."""
try:
import pandas as pd
except ImportError:
raise ImportError(
'Pandas is not installed. Please install the SDK using "pip install'
' google-cloud-aiplatform[evaluation]"'
)
if filepath.startswith(_GCS_PREFIX):
file_contents = _read_gcs_file_contents(filepath)
return pd.read_csv(io.StringIO(file_contents), encoding="utf-8")
else:
return pd.read_csv(filepath, encoding="utf-8")
def _load_bigquery(table_id: str) -> "pd.DataFrame":
"""Loads data from a BigQuery table into a DataFrame."""
bigquery_client = bigquery.Client(project=initializer.global_config.project)
table = bigquery_client.get_table(table_id)
return bigquery_client.list_rows(table).to_dataframe()
def _read_gcs_file_contents(filepath: str) -> str:
"""Reads the contents of a file from Google Cloud Storage.
Args:
filepath: The GCS file path (e.g., 'gs://bucket_name/file.csv')
Returns:
str: The contents of the file.
"""
storage_client = storage.Client(
project=initializer.global_config.project,
credentials=initializer.global_config.credentials,
)
bucket_name, blob_path = filepath[len(_GCS_PREFIX) :].split("/", 1)
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob(blob_path)
return blob.download_as_string().decode("utf-8")
def _upload_pandas_df_to_gcs(
df: "pd.DataFrame", upload_gcs_path: str, file_type: Literal["csv", "jsonl"]
) -> None:
"""Uploads the provided Pandas DataFrame to a GCS bucket.
Args:
df: The Pandas DataFrame to upload.
upload_gcs_path: The GCS path to upload the data file.
file_type: The file type of the data file.
"""
with tempfile.TemporaryDirectory() as temp_dir:
if file_type == "csv":
local_dataset_path = os.path.join(temp_dir, "metrics_table.csv")
df.to_csv(path_or_buf=local_dataset_path)
elif file_type == "jsonl":
local_dataset_path = os.path.join(temp_dir, "metrics_table.jsonl")
df.to_json(path_or_buf=local_dataset_path, orient="records", lines=True)
else:
raise ValueError(
f"Unsupported file type: {file_type} from {upload_gcs_path}."
" Please provide a valid GCS path with `jsonl` or `csv` suffix."
)
_upload_file_to_gcs(upload_gcs_path, local_dataset_path)
def _upload_evaluation_summary_to_gcs(
summary_metrics: Dict[str, float],
upload_gcs_path: str,
candidate_model_name: Optional[str] = None,
baseline_model_name: Optional[str] = None,
) -> None:
"""Uploads the evaluation summary to a GCS bucket."""
summary = {
"summary_metrics": summary_metrics,
}
if candidate_model_name:
summary["candidate_model_name"] = candidate_model_name
if baseline_model_name:
summary["baseline_model_name"] = baseline_model_name
with tempfile.TemporaryDirectory() as temp_dir:
local_summary_path = os.path.join(temp_dir, "summary_metrics.json")
json.dump(summary, open(local_summary_path, "w"))
_upload_file_to_gcs(upload_gcs_path, local_summary_path)
def _upload_file_to_gcs(upload_gcs_path: str, filename: str) -> None:
storage_client = storage.Client(
project=initializer.global_config.project,
credentials=initializer.global_config.credentials,
)
storage.Blob.from_string(
uri=upload_gcs_path, client=storage_client
).upload_from_filename(filename)
def upload_evaluation_results(
eval_result: eval_base.EvalResult,
destination_uri_prefix: str,
file_name: str,
candidate_model_name: Optional[str] = None,
baseline_model_name: Optional[str] = None,
) -> None:
"""Uploads eval results to GCS destination.
Args:
eval_result: Eval results to upload.
destination_uri_prefix: GCS folder to store the data.
file_name: File name to store the metrics table.
candidate_model_name: Optional. Candidate model name.
baseline_model_name: Optional. Baseline model name.
"""
if not destination_uri_prefix:
_ipython_utils.display_gen_ai_evaluation_results_button()
return
if eval_result.metrics_table is None:
return
if destination_uri_prefix.startswith(_GCS_PREFIX):
base_name, extension = os.path.splitext(file_name)
file_type = extension.lower()[1:]
output_folder = destination_uri_prefix + "/" + base_name
metrics_table_path = output_folder + "/" + file_name
_upload_pandas_df_to_gcs(
eval_result.metrics_table, metrics_table_path, file_type
)
_upload_evaluation_summary_to_gcs(
eval_result.summary_metrics,
output_folder + "/summary_metrics.json",
candidate_model_name,
baseline_model_name,
)
_ipython_utils.display_gen_ai_evaluation_results_button(
metrics_table_path.split(_GCS_PREFIX)[1]
)
else:
raise ValueError(
f"Unsupported destination URI: {destination_uri_prefix}."
f" Please provide a valid GCS bucket URI prefix starting with"
f" {_GCS_PREFIX}."
)
def initialize_metric_column_mapping(
metric_column_mapping: Optional[Dict[str, str]], dataset: "pd.DataFrame"
):
"""Initializes metric column mapping with dataset columns."""
initialized_metric_column_mapping = {}
for column in dataset.columns:
initialized_metric_column_mapping[column] = column
if metric_column_mapping:
for key, value in metric_column_mapping.items():
if key in initialized_metric_column_mapping:
_LOGGER.warning(
f"Cannot override `{key}` column with `{key}:{value}` mapping"
f" because `{key}` column is present in the evaluation"
" dataset. `metric_column_mapping` cannot override keys"
" that are already in evaluation dataset columns."
)
else:
initialized_metric_column_mapping[key] = value
return initialized_metric_column_mapping